First name
Marciana
Middle name
L
Last name
Laster

Title

A review of ferric citrate clinical studies, and the rationale and design of the Ferric Citrate and Chronic Kidney Disease in Children (FIT4KiD) trial.

Year of Publication

2022

Date Published

2022 Mar 02

ISSN Number

1432-198X

Abstract

<p>Pediatric chronic kidney disease (CKD) is characterized by many co-morbidities, including impaired growth and development, CKD-mineral and bone disorder, anemia, dysregulated iron metabolism, and cardiovascular disease. In pediatric CKD cohorts, higher circulating concentrations of fibroblast growth factor 23 (FGF23) are associated with some of these adverse clinical outcomes, including CKD progression and left ventricular hypertrophy. It is hypothesized that lowering FGF23 levels will reduce the risk of these events and improve clinical outcomes. Reducing FGF23 levels in CKD may be accomplished by targeting two key stimuli of FGF23 production-dietary phosphate absorption and iron deficiency. Ferric citrate is approved for use as an enteral phosphate binder and iron replacement product in adults with CKD. Clinical trials in adult CKD cohorts have also demonstrated that ferric citrate decreases circulating FGF23 concentrations. This review outlines the possible deleterious effects of excess FGF23 in CKD, summarizes data from the adult CKD clinical trials of ferric citrate, and presents the Ferric Citrate and Chronic Kidney Disease in Children (FIT4KiD) study, a randomized, placebo-controlled trial to evaluate the effects of ferric citrate on FGF23 in pediatric patients with CKD stages 3-4 (ClinicalTrials.gov Identifier NCT04741646).</p>

DOI

10.1007/s00467-022-05492-7

Alternate Title

Pediatr Nephrol

PMID

35237863

Title

Race and Ethnicity Predict Bone Markers and Fracture in Pediatric Patients With Chronic Kidney Disease.

Year of Publication

2021

Number of Pages

298-304

Date Published

2021 02

ISSN Number

1523-4681

Abstract

<p>Studies in healthy children have shown racial-ethnic differences in bone markers and bone outcomes including fractures. At present, limited studies have evaluated the impact of race and ethnicity on bone markers and fractures within the pediatric chronic kidney disease (CKD) population. In a cohort study of 762 children between the ages of 1.5 years and 18 years, with CKD stages 1 to 4 from the CKD in children (CKiD) cohort, the relationship between racial-ethnic group and bone markers (parathyroid hormone [PTH], 25-hydroxyvitamin D [25-OHD], 1,25-dihydroxyvitamin D [1,25(OH) D], and C-terminal fibroblast growth factor [FGF23]) was determined using linear mixed models. Additionally, logistic regression was used to evaluate racial-ethnic differences in prevalent fracture upon study entry. Black race was associated with 23% higher PTH levels (confidence interval [CI], 2.5% to 47.7%; p = .03), 33.1% lower 25-OHD levels (CI, -39.7% to -25.7%; p &lt; .0001), and no difference in C-terminal FGF23 or 1,25(OH) D levels when compared to whites. Hispanic ethnicity was associated with 15.9% lower C-terminal FGF23 levels (CI, -28.3% to -1.5%; p = .03) and 13.8% lower 25-OHD levels (CI, -22.2% to -4.5%; p = .005) when compared to whites. Black and Hispanic children had 74% (odds ratio [OR] 0.26; CI, 0.14 to 0.49; p = .001) and 66% (OR 0.34; CI, 0.17 to 0.65; p &lt; .0001) lower odds of any fracture than white children at study entry, respectively. Race and ethnicity are associated with differences in bone markers and despite lower 25-OHD levels, both black and Hispanic children with CKD reported a lower prevalent fracture history than white children. The current findings in the CKD population are similar to racial-ethnic differences described in healthy children. Additional studies are needed to better understand how these differences might impact the management of pediatric CKD-MBD. © 2020 American Society for Bone and Mineral Research (ASBMR).</p>

DOI

10.1002/jbmr.4182

Alternate Title

J Bone Miner Res

PMID

32960469

WATCH THIS PAGE

Subscription is not available for this page.