First name
Amy
Middle name
Goodwin
Last name
Davies

Title

Evaluating Kidney Function Decline in Children with Chronic Kidney Disease Using a Multi-Institutional Electronic Health Record Database.

Year of Publication

2023

Number of Pages

173-182

Date Published

02/2023

ISSN Number

1555-905X

Abstract

BACKGROUND: The objectives of this study were to use electronic health record data from a US national multicenter pediatric network to identify a large cohort of children with CKD, evaluate CKD progression, and examine clinical risk factors for kidney function decline.

METHODS: This retrospective cohort study identified children seen between January 1, 2009, to February 28, 2022. Data were from six pediatric health systems in PEDSnet. We identified children aged 18 months to 18 years who met criteria for CKD: two eGFR values <90 and ≥15 ml/min per 1.73 m2 separated by ≥90 days without an intervening value ≥90. CKD progression was defined as a composite outcome: eGFR <15 ml/min per 1.73 m2, ≥50% eGFR decline, long-term dialysis, or kidney transplant. Subcohorts were defined based on CKD etiology: glomerular, nonglomerular, or malignancy. We assessed the association of hypertension (≥2 visits with hypertension diagnosis code) and proteinuria (≥1 urinalysis with ≥1+ protein) within 2 years of cohort entrance on the composite outcome.

RESULTS: Among 7,148,875 children, we identified 11,240 (15.7 per 10,000) with CKD (median age 11 years, 50% female). The median follow-up was 5.1 (interquartile range 2.8-8.3) years, the median initial eGFR was 75.3 (interquartile range 61-83) ml/min per 1.73 m2, 37% had proteinuria, and 35% had hypertension. The following were associated with CKD progression: lower eGFR category (adjusted hazard ratio [aHR] 1.44 [95% confidence interval (95% CI), 1.23 to 1.69], aHR 2.38 [95% CI, 2.02 to 2.79], aHR 5.75 [95% CI, 5.05 to 6.55] for eGFR 45-59 ml/min per 1.73 m2, 30-44 ml/min per 1.73 m2, 15-29 ml/min per 1.73 m2 at cohort entrance, respectively, when compared with eGFR 60-89 ml/min per 1.73 m2), glomerular disease (aHR 2.01 [95% CI, 1.78 to 2.28]), malignancy (aHR 1.79 [95% CI, 1.52 to 2.11]), proteinuria (aHR 2.23 [95% CI, 1.89 to 2.62]), hypertension (aHR 1.49 [95% CI, 1.22 to 1.82]), proteinuria and hypertension together (aHR 3.98 [95% CI, 3.40 to 4.68]), count of complex chronic comorbidities (aHR 1.07 [95% CI, 1.05 to 1.10] per additional comorbid body system), male sex (aHR 1.16 [95% CI, 1.05 to 1.28]), and younger age at cohort entrance (aHR 0.95 [95% CI, 0.94 to 0.96] per year older).

CONCLUSIONS: In large-scale real-world data for children with CKD, disease etiology, albuminuria, hypertension, age, male sex, lower eGFR, and greater medical complexity at start of follow-up were associated with more rapid decline in kidney function.

DOI

10.2215/CJN.0000000000000051

Alternate Title

Clin J Am Soc Nephrol

PMID

36754006
Inner Banner
Publication Image
Inner Banner
Publication Image

Title

Using a Multi-Institutional Pediatric Learning Health System to Identify Systemic Lupus Erythematosus and Lupus Nephritis: Development and Validation of Computable Phenotypes.

Year of Publication

2021

Number of Pages

Date Published

2021 Nov 03

ISSN Number

1555-905X

Abstract

<p><strong>BACKGROUND AND OBJECTIVES: </strong>Performing adequately powered clinical trials in pediatric diseases, such as SLE, is challenging. Improved recruitment strategies are needed for identifying patients.</p>

<p><strong>DESIGN, SETTING, PARTICIPANTS, &amp; MEASUREMENTS: </strong>Electronic health record algorithms were developed and tested to identify children with SLE both with and without lupus nephritis. We used single-center electronic health record data to develop computable phenotypes composed of diagnosis, medication, procedure, and utilization codes. These were evaluated iteratively against a manually assembled database of patients with SLE. The highest-performing phenotypes were then evaluated across institutions in PEDSnet, a national health care systems network of &gt;6.7 million children. Reviewers blinded to case status used standardized forms to review random samples of cases (=350) and noncases (=350).</p>

<p><strong>RESULTS: </strong>Final algorithms consisted of both utilization and diagnostic criteria. For both, utilization criteria included two or more in-person visits with nephrology or rheumatology and ≥60 days follow-up. SLE diagnostic criteria included absence of neonatal lupus, one or more hydroxychloroquine exposures, and either three or more qualifying diagnosis codes separated by ≥30 days or one or more diagnosis codes and one or more kidney biopsy procedure codes. Sensitivity was 100% (95% confidence interval [95% CI], 99 to 100), specificity was 92% (95% CI, 88 to 94), positive predictive value was 91% (95% CI, 87 to 94), and negative predictive value was 100% (95% CI, 99 to 100). Lupus nephritis diagnostic criteria included either three or more qualifying lupus nephritis diagnosis codes (or SLE codes on the same day as glomerular/kidney codes) separated by ≥30 days or one or more SLE diagnosis codes and one or more kidney biopsy procedure codes. Sensitivity was 90% (95% CI, 85 to 94), specificity was 93% (95% CI, 89 to 97), positive predictive value was 94% (95% CI, 89 to 97), and negative predictive value was 90% (95% CI, 84 to 94). Algorithms identified 1508 children with SLE at PEDSnet institutions (537 with lupus nephritis), 809 of whom were seen in the past 12 months.</p>

<p><strong>CONCLUSIONS: </strong>Electronic health record-based algorithms for SLE and lupus nephritis demonstrated excellent classification accuracy across PEDSnet institutions.</p>

DOI

10.2215/CJN.07810621

Alternate Title

Clin J Am Soc Nephrol

PMID

34732529
Inner Banner
Publication Image
Inner Banner
Publication Image