First name
Haochang
Last name
Shou

Title

Associations of bedroom PM, CO, temperature, humidity, and noise with sleep: An observational actigraphy study.

Year of Publication

2023

Date Published

04/2023

ISSN Number

2352-7226

Abstract

OBJECTIVE: Climate change and urbanization increasingly cause extreme conditions hazardous to health. The bedroom environment plays a key role for high-quality sleep. Studies objectively assessing multiple descriptors of the bedroom environment as well as sleep are scarce.

METHODS: Particulate matter with a particle size <2.5 µm (PM), temperature, humidity, carbon dioxide (CO), barometric pressure, and noise levels were continuously measured for 14 consecutive days in the bedroom of 62 participants (62.9% female, mean ± SD age: 47.7 ± 13.2 years) who wore a wrist actigraph and completed daily morning surveys and sleep logs.

RESULTS: In a hierarchical mixed effect model that included all environmental variables and adjusted for elapsed sleep time and multiple demographic and behavioral variables, sleep efficiency calculated for consecutive 1-hour periods decreased in a dose-dependent manner with increasing levels of PM, temperature, CO, and noise. Sleep efficiency in the highest exposure quintiles was 3.2% (PM, p < .05), 3.4% (temperature, p < .05), 4.0% (CO, p < .01), and 4.7% (noise, p < .0001) lower compared to the lowest exposure quintiles (all p-values adjusted for multiple testing). Barometric pressure and humidity were not associated with sleep efficiency. Bedroom humidity was associated with subjectively assessed sleepiness and poor sleep quality (both p < .05), but otherwise environmental variables were not statistically significantly associated with actigraphically assessed total sleep time and wake after sleep onset or with subjectively assessed sleep onset latency, sleep quality, and sleepiness. Assessments of bedroom comfort suggest subjective habituation irrespective of exposure levels.

CONCLUSIONS: These findings add to a growing body of evidence highlighting the importance of the bedroom environment-beyond the mattress-for high-quality sleep.

DOI

10.1016/j.sleh.2023.02.010

Alternate Title

Sleep Health

PMID

37076419
Featured Publication
No

Title

Association of Multiple Plasma Biomarker Concentrations with Progression of Prevalent Diabetic Kidney Disease: Findings from the Chronic Renal Insufficiency Cohort (CRIC) Study.

Year of Publication

2021

Number of Pages

115-126

Date Published

2021 01

ISSN Number

1533-3450

Abstract

<p><strong>BACKGROUND: </strong>Although diabetic kidney disease is the leading cause of ESKD in the United States, identifying those patients who progress to ESKD is difficult. Efforts are under way to determine if plasma biomarkers can help identify these high-risk individuals.</p>

<p><strong>METHODS: </strong>In our case-cohort study of 894 Chronic Renal Insufficiency Cohort Study participants with diabetes and an eGFR of &lt;60 ml/min per 1.73 m at baseline, participants were randomly selected for the subcohort; cases were those patients who developed progressive diabetic kidney disease (ESKD or 40% eGFR decline). Using a multiplex system, we assayed plasma biomarkers related to tubular injury, inflammation, and fibrosis (KIM-1, TNFR-1, TNFR-2, MCP-1, suPAR, and YKL-40). Weighted Cox regression models related biomarkers to progression of diabetic kidney disease, and mixed-effects models estimated biomarker relationships with rate of eGFR change.</p>

<p><strong>RESULTS: </strong>Median follow-up was 8.7 years. Higher concentrations of KIM-1, TNFR-1, TNFR-2, MCP-1, suPAR, and YKL-40 were each associated with a greater risk of progression of diabetic kidney disease, even after adjustment for established clinical risk factors. After accounting for competing biomarkers, KIM-1, TNFR-2, and YKL-40 remained associated with progression of diabetic kidney disease; TNFR-2 had the highest risk (adjusted hazard ratio, 1.61; 95% CI, 1.15 to 2.26). KIM-1, TNFR-1, TNFR-2, and YKL-40 were associated with rate of eGFR decline.</p>

<p><strong>CONCLUSIONS: </strong>Higher plasma levels of KIM-1, TNFR-1, TNFR-2, MCP-1, suPAR, and YKL-40 were associated with increased risk of progression of diabetic kidney disease; TNFR-2 had the highest risk after accounting for the other biomarkers. These findings validate previous literature on TNFR-1, TNFR-2, and KIM-1 in patients with prevalent CKD and provide new insights into the influence of suPAR and YKL-40 as plasma biomarkers that require validation.</p>

DOI

10.1681/ASN.2020040487

Alternate Title

J Am Soc Nephrol

PMID

33122288

WATCH THIS PAGE

Subscription is not available for this page.