First name
Douglas
Middle name
C
Last name
Wallace

Title

Influence of Immune Cell Subtypes on Mitochondrial Measurements in Peripheral Blood Mononuclear Cells From Children with Sepsis.

Year of Publication

2022

Number of Pages

630-638

Date Published

05/2022

ISSN Number

1540-0514

Abstract

INTRODUCTION: Peripheral blood mononuclear cells (PBMCs) are commonly used to compare mitochondrial function in patients with versus without sepsis, but how these measurements in this mixed cell population vary by composition of immune cell subtypes is not known, especially in children. We determined the effect of changing immune cell composition on PBMC mitochondrial respiration and content in children with and without sepsis.

METHODS: PBMC mitochondrial respiration and citrate synthase (CS) activity, a marker of mitochondrial content, were measured in 167 children with sepsis at three timepoints (day 1-2, 3-5, and 8-14) and once in 19 nonseptic controls. The proportion of lymphocytes and monocytes and T, B, and NK cells was measured using flow cytometry. More specific CD4+ and CD8+ T cell subsets were measured from 13 sepsis patients and 6 controls. Spearman's correlation and simple and mixed effects linear regression were used to determine the association of PBMC mitochondrial measures with proportion of immune cell subtypes.

RESULTS: PBMC mitochondrial respiration and CS activity were correlated with proportion of monocytes, lymphocytes, T B, and NK cells in controls, but not in sepsis patients. PBMC mitochondrial respiration was correlated with CD4+ and CD8+ T cell subsets in both groups. After controlling for differences in immune cell composition between groups using linear regression models, PBMC respiration and CS activity remained lower in sepsis patients than controls.

CONCLUSIONS: Mitochondrial measurements from PBMCs varied with changes in immune cell composition in children with and without sepsis. However, differences in PBMC mitochondrial measurements between sepsis patients and controls were at least partially attributable to the effects of sepsis rather than solely an epiphenomena of variable immune cell composition.

DOI

10.1097/SHK.0000000000001903

Alternate Title

Shock

PMID

34966070

Title

Decreased Intestinal Microbiome Diversity in Pediatric Sepsis: A Conceptual Framework for Intestinal Dysbiosis to Influence Immunometabolic Function.

Year of Publication

2021

Number of Pages

e0360

Date Published

2021 Mar

ISSN Number

2639-8028

Abstract

<p><b>Objectives: </b>The intestinal microbiome can modulate immune function through production of microbial-derived short-chain fatty acids. We explored whether intestinal dysbiosis in children with sepsis leads to changes in microbial-derived short-chain fatty acids in plasma and stool that are associated with immunometabolic dysfunction in peripheral blood mononuclear cells.</p><p><b>Design: </b>Prospective observational pilot study.</p><p><b>Setting: </b>Single academic PICU.</p><p><b>Patients: </b>Forty-three children with sepsis/septic shock and 44 healthy controls.</p><p><b>Measurements and Main Results: </b>Stool and plasma samples were serially collected for sepsis patients; stool was collected once for controls. The intestinal microbiome was assessed using 16S ribosomal RNA sequencing and alpha- and beta-diversity were determined. We measured short-chain fatty acids using liquid chromatography, peripheral blood mononuclear cell mitochondrial respiration using high-resolution respirometry, and immune function using ex vivo lipopolysaccharide-stimulated whole blood tumor necrosis factor-α. Sepsis patients exhibited reduced microbial diversity compared with healthy controls, with lower alpha- and beta-diversity. Reduced microbial diversity among sepsis patients (mainly from lower abundance of commensal obligate anaerobes) was associated with increased acetic and propionic acid and decreased butyric, isobutyric, and caproic acid. Decreased levels of plasma butyric acid were further associated with lower peripheral blood mononuclear cell mitochondrial respiration, which in turn, was associated with lower lipopolysaccharide-stimulated tumor necrosis factor-α. However, neither intestinal dysbiosis nor specific patterns of short-chain fatty acids were associated with lipopolysaccharide-stimulated tumor necrosis factor-α.</p><p><b>Conclusions: </b>Intestinal dysbiosis was associated with altered short-chain fatty acid metabolites in children with sepsis, but these findings were not linked directly to mitochondrial or immunologic changes. More detailed mechanistic studies are needed to test the role of microbial-derived short-chain fatty acids in the progression of sepsis.</p>

DOI

10.1097/CCE.0000000000000360

Alternate Title

Crit Care Explor

PMID

33786436

WATCH THIS PAGE

Subscription is not available for this page.