First name
Jennie
Middle name
H
Last name
Kwon

Title

Comparison of the Respiratory Resistomes and Microbiota in Children Receiving Short versus Standard Course Treatment for Community-Acquired Pneumonia.

Year of Publication

2022

Number of Pages

e0019522

Date Published

2022 Mar 24

ISSN Number

2150-7511

Abstract

<p>Pediatric community-acquired pneumonia (CAP) is often treated with 10 days of antibiotics. Shorter treatment strategies may be effective and lead to less resistance. The impact of duration of treatment on the respiratory microbiome is unknown. Data are from children ( = 171), ages 6 to 71 months, enrolled in the SCOUT-CAP trial (NCT02891915). Children with CAP were randomized to a short (5 days) versus standard (10 days) beta-lactam treatment strategy. Throat swabs were collected at enrollment and the end of the study and used for shotgun metagenomic sequencing. The number of beta-lactam and multidrug efflux resistance genes per prokaryotic cell (RGPC) was significantly lower in children receiving the short compared to standard treatment strategy at the end of the study (Wilcoxon rank sum test,  &lt; 0.05 for each). Wilcoxon effect sizes were small for beta-lactam (: 0.15; 95% confidence interval [CI], 0.01 to 0.29) and medium for multidrug efflux RGPC (: 0.23; 95% CI, 0.09 to 0.37). Analyses comparing the resistome at the beginning and end of the trial indicated that in contrast to the standard strategy group, the resistome significantly differed in children receiving the short course strategy. Relative abundances of commensals such as Neisseria subflava were higher in children receiving the standard strategy, and species and Veillonella parvula were higher in children receiving the short course strategy. We conclude that children receiving 5 days of beta-lactam therapy for CAP had a significantly lower abundance of antibiotic resistance determinants than those receiving standard 10-day treatment. These data provide an additional rationale for reductions in antibiotic use when feasible. Antibiotic resistance is a major threat to public health. Treatment strategies involving shorter antibiotic courses have been proposed as a strategy to lower the potential for antibiotic resistance. We examined relationships between the duration of antibiotic treatment and its impact on resistance genes and bacteria in the respiratory microbiome using data from a randomized controlled trial of beta-lactam therapy for pediatric pneumonia. The randomized design provides reliable evidence of the effectiveness of interventions and minimizes the potential for confounding. Children receiving 5 days of therapy for pneumonia had a lower prevalence of two different types of resistance genes than did those receiving the 10-day treatment. Our data also suggest that children receiving longer durations of therapy have a greater abundance of antibiotic resistance genes for a longer period of time than do children receiving shorter durations of therapy. These data provide an additional rationale for reductions in antibiotic use.</p>

DOI

10.1128/mbio.00195-22

Alternate Title

mBio

PMID

35323040

Title

Gastrointestinal Microbiome Disruption and Antibiotic-Associated Diarrhea in Children Receiving Antibiotic Therapy for Community-Acquired Pneumonia.

Year of Publication

2022

Date Published

2022 Mar 06

ISSN Number

1537-6613

Abstract

<p>Antibiotic-associated diarrhea (AAD) is a common side effect of antibiotics. We examined the gastrointestinal microbiota in children treated with beta-lactams for community-acquired pneumonia. Data were from 66 children (n=198 samples), ages 6-71 months, enrolled in the SCOUT-CAP trial (NCT02891915). AAD was defined as ≥1 day of diarrhea. Stool samples were collected on study days 1, 6-10, and 19-25. Samples were analyzed using 16s-rRNA gene sequencing to identify associations between patient characteristics, microbiota characteristics, and AAD (yes/no). Nineteen (29%) children developed AAD. Microbiota compositional profiles differed between AAD groups (PERMANOVA, P &lt; 0.03) and across visits (P &lt; 0.001). Children with higher baseline relative abundances of two Bacteroides species were less likely to experience AAD. Higher baseline abundance of Lachnospiraceae and amino acid biosynthesis pathways were associated with AAD. Children in the AAD group experienced prolonged dysbiosis (P &lt; 0.05). Specific gastrointestinal microbiota profiles are associated with AAD in children.</p>

DOI

10.1093/infdis/jiac082

Alternate Title

J Infect Dis

PMID

35249113

Title

COVID-19 Research Agenda for Healthcare Epidemiology.

Year of Publication

2021

Number of Pages

1-81

Date Published

2021 Jan 25

ISSN Number

1559-6834

Abstract

<p>This SHEA white paper identifies knowledge gaps and challenges in healthcare epidemiology research related to COVID-19 with a focus on core principles of healthcare epidemiology. These gaps, revealed during the worst phases of the COVID-19 pandemic, are described in 10 sections: epidemiology, outbreak investigation, surveillance, isolation precaution practices, personal protective equipment (PPE), environmental contamination and disinfection, drug and supply shortages, antimicrobial stewardship, healthcare personnel (HCP) occupational safety, and return to work policies. Each section highlights three critical healthcare epidemiology research questions with detailed description provided in supplemental materials. This research agenda calls for translational studies from laboratory-based basic science research to well-designed, large-scale studies and health outcomes research. Research gaps and challenges related to nursing homes and social disparities are included. Collaborations across various disciplines, expertise and across diverse geographic locations will be critical.</p>

DOI

10.1017/ice.2021.25

Alternate Title

Infect Control Hosp Epidemiol

PMID

33487199

WATCH THIS PAGE

Subscription is not available for this page.