First name
Regina
Middle name
M
Last name
Myers

Title

Impact of poverty and neighborhood opportunity on outcomes for children treated with CD19-directed CAR T-cell therapy.

Year of Publication

2023

Number of Pages

609-619

Date Published

02/2023

ISSN Number

1528-0020

Abstract

Children living in poverty experience excessive relapse and death from newly diagnosed acute lymphoblastic leukemia (ALL). The influence of household poverty and neighborhood social determinants on outcomes from chimeric antigen receptor (CAR) T-cell therapy for relapsed/refractory (r/r) leukemia is poorly described. We identified patients with r/r CD19+ ALL/lymphoblastic lymphoma treated on CD19-directed CAR T-cell clinical trials or with commercial tisagenlecleucel from 2012 to 2020. Socioeconomic status (SES) was proxied at the household level, with poverty exposure defined as Medicaid-only insurance. Low-neighborhood opportunity was defined by the Childhood Opportunity Index. Among 206 patients aged 1 to 29, 35.9% were exposed to household poverty, and 24.9% had low-neighborhood opportunity. Patients unexposed to household poverty or low-opportunity neighborhoods were more likely to receive CAR T-cell therapy with a high disease burden (>25%), a disease characteristic associated with inferior outcomes, as compared with less advantaged patients (38% vs 30%; 37% vs 26%). Complete remission (CR) rate was 93%, with no significant differences by household poverty (P = .334) or neighborhood opportunity (P = .504). In multivariate analysis, patients from low-opportunity neighborhoods experienced an increased hazard of relapse as compared with others (P = .006; adjusted hazard ratio [HR], 2.3; 95% confidence interval [CI], 1.3-4.1). There was no difference in hazard of death (P = .545; adjusted HR, 1.2; 95% CI, 0.6-2.4). Among children who successfully receive CAR T-cell therapy, CR and overall survival are equitable regardless of proxied SES and neighborhood opportunity. Children from more advantaged households and neighborhoods receive CAR T-cell therapy with a higher disease burden. Investigation of multicenter outcomes and access disparities outside of clinical trial settings is warranted.

DOI

10.1182/blood.2022017866

Alternate Title

Blood

PMID

36351239
Featured Publication
No

Title

Impact of poverty and neighborhood opportunity on outcomes for children treated with CD19-directed CAR T-cell therapy.

Year of Publication

2022

Date Published

11/2022

ISSN Number

1528-0020

Abstract

Children living in poverty experience excess relapse and death from newly diagnosed acute lymphoblastic leukemia (ALL). The influence of household poverty and neighborhood social determinants on outcomes from CAR T-cell therapy for relapsed/refractory (r/r) leukemia is poorly described. We identified patients with r/r CD19+ ALL/lymphoblastic lymphoma treated on CD19-directed CAR T-cell clinical trials or with commercial tisagenlecleucel from 2012 to 2020. Socioeconomic status (SES) was proxied at the household-level, with poverty-exposure defined as Medicaid-only insurance. Low neighborhood opportunity was defined by the Childhood Opportunity Index. Among 206 patients aged 1-29, 35.9% were household-poverty exposed, and 24.9% had low neighborhood opportunity. Patients unexposed to household-poverty or low-opportunity neighborhoods were more likely to receive CAR T-cell therapy with high disease burden (>25%)-a disease characteristic associated with inferior outcomes-as compared to less advantaged patients (38% vs 30%; 37% vs 26%). Complete remission (CR) rate was 93% with no significant differences by household-poverty (P = 0.334) or neighborhood opportunity (P = 0.504). In multivariate analysis, patients from low-opportunity neighborhoods experienced increased hazard of relapse as compared to others (P = 0.006, adjusted HR 2.3, 95% CI 1.3-4.1). There was no difference in hazard of death (P = 0.545, adjusted HR 1.2, 95% CI 0.6-2.4). Among children who successfully receive CAR T-cell therapy, CR and OS is equitable regardless of proxied SES and neighborhood opportunity. Children from more advantaged households and neighborhoods receive CAR T-cell therapy with higher disease burden. Investigation of multicenter outcomes and access disparities outside of clinical-trial settings is warranted. Clinical trials: NCT01626495; NCT02435849 ; NCT02374333; NCT02228096; NCT02906371.

DOI

10.1182/blood.2022017866

Alternate Title

Blood

PMID

36351239

Title

Absolute lymphocyte count recovery following initial acute myelogenous leukemia therapy: Implications for adoptive cell therapy.

Year of Publication

2022

Number of Pages

e30062

Date Published

11/2022

ISSN Number

1545-5017

Abstract

BACKGROUND: An adequate absolute lymphocyte count (ALC) is an essential first step in autologous chimeric antigen receptor (CAR) T-cell manufacturing. For patients with acute myelogenous leukemia (AML), the intensity of chemotherapy received may affect adequate ALC recovery required for CAR T-cell production. We sought to analyze ALC following each course of upfront therapy as one metric for CAR T-cell manufacturing feasibility in children and young adults with AML.

PROCEDURE: ALC data were collected from an observational study of patients with newly diagnosed AML between the ages of 1 month and 21 years who received treatment between the years of 2006 and 2018 at one of three hospitals in the Leukemia Electronic Abstraction of Records Network (LEARN) consortium.

RESULTS: Among 193 patients with sufficient ALC data for analysis, the median ALC following induction 1 was 1715 cells/μl (interquartile range: 1166-2388), with successive decreases in ALC with each subsequent course. Similarly, the proportion of patients achieving an ALC >400 cells/μl decreased following each course, ranging from 98.4% (190/193) after course 1 to 66.7% (22/33) for patients who received a fifth course of therapy.

CONCLUSIONS: There is a successive decline of ALC recovery with subsequent courses of chemotherapy. Despite this decline, ALC values are likely sufficient to consider apheresis prior to the initiation of each course of upfront therapy for the majority of newly diagnosed pediatric AML patients, thereby providing a window of opportunity for T-cell collection for those patients identified at high risk of relapse or with refractory disease.

DOI

10.1002/pbc.30062

Alternate Title

Pediatr Blood Cancer

PMID

36370087

Title

Impact of high-risk cytogenetics on outcomes for children and young adults receiving CD19-directed CAR T-cell therapy.

Year of Publication

2022

Number of Pages

2173-2185

Date Published

2022 Apr 07

ISSN Number

1528-0020

Abstract

Chimeric antigen receptor (CAR) T-cell therapy can induce durable remissions of relapsed/refractory B-acute lymphoblastic leukemia (ALL). However, case reports suggested differential outcomes mediated by leukemia cytogenetics. We identified children and young adults with relapsed/refractory CD19+ ALL/lymphoblastic lymphoma treated on 5 CD19-directed CAR T-cell (CTL019 or humanized CART19) clinical trials or with commercial tisagenlecleucel from April 2012 to April 2019. Patients were hierarchically categorized according to leukemia cytogenetics: High-risk lesions were defined as KMT2A (MLL) rearrangements, Philadelphia chromosome (Ph+), Ph-like, hypodiploidy, or TCF3/HLF; favorable as hyperdiploidy or ETV6/RUNX1; and intermediate as iAMP21, IKZF1 deletion, or TCF3/PBX1. Of 231 patients aged 1 to 29, 74 (32%) were categorized as high risk, 28 (12%) as intermediate, 43 (19%) as favorable, and 86 (37%) as uninformative. Overall complete remission rate was 94%, with no difference between strata. There was no difference in relapse-free survival (RFS; P = .8112), with 2-year RFS for the high-risk group of 63% (95% confidence interval [CI], 52-77). There was similarly no difference seen in overall survival (OS) (P = .5488), with 2-year OS for the high-risk group of 70% (95% CI, 60-82). For patients with KMT2A-rearranged infant ALL (n = 13), 2-year RFS was 67% (95% CI, 45-99), and OS was 62% (95% CI, 40-95), with multivariable analysis demonstrating no increased risk of relapse (hazard ratio, 0.70; 95% CI, 0.21-2.90; P = .7040) but a higher proportion of relapses associated with myeloid lineage switch and a 3.6-fold increased risk of all-cause death (95% CI, 1.04-12.75; P = .0434). CTL019/huCART19/tisagenlecleucel are effective at achieving durable remissions across cytogenetic categories. Relapsed/refractory patients with high-risk cytogenetics, including KMT2A-rearranged infant ALL, demonstrated high RFS and OS probabilities at 2 years.

DOI

10.1182/blood.2021012727

Alternate Title

Blood

PMID

34871373

Title

CD19-targeted chimeric antigen receptor T-cell therapy for CNS relapsed or refractory acute lymphocytic leukaemia: a post-hoc analysis of pooled data from five clinical trials.

Year of Publication

2021

Number of Pages

e711-e722

Date Published

2021 Oct

ISSN Number

2352-3026

Abstract

<p><strong>BACKGROUND: </strong>CNS relapse of acute lymphocytic leukaemia is difficult to treat. Durable remissions of relapsed or refractory B-cell acute lymphocytic leukaemia have been observed following treatment with CD19-directed chimeric antigen receptor (CAR) T cells; however, most trials have excluded patients with active CNS disease. We aimed to assess the safety and activity of CAR T-cell therapy in patients with a history of CNS relapsed or refractory B-cell acute lymphocytic leukaemia.</p>

<p><strong>METHODS: </strong>In this post-hoc analysis, we included 195 patients (aged 1-29 years; 110 [56%] male and 85 [44%] female) with relapsed or refractory CD19-positive acute lymphocytic leukaemia or lymphocytic lymphoma from five clinical trials (Pedi CART19, 13BT022, ENSIGN, ELIANA, and 16CT022) done at the Children's Hospital of Philadelphia (Philadelphia, PA, USA), in which participants received CD19-directed CAR T-cell therapy between April 17, 2012, and April 16, 2019. The trials required control of CNS disease at enrolment and infusion and excluded treatment in the setting of acute neurological toxic effects (&gt;grade 1 in severity) or parenchymal lesions deemed to increase the risk of neurotoxicity. 154 patients from Pedi CART19, ELIANA, ENSIGN, and 16CT022 received tisagenlecleucel and 41 patients from the 13BT022 trial received the humanised CD19-directed CAR, huCART19. We categorised patients into two strata on the basis of CNS status at relapse or within the 12 months preceding CAR T-cell infusion-either CNS-positive or CNS-negative disease. Patients with CNS-positive disease were further divided on the basis of morphological bone marrow involvement-either combined bone marrow and CNS involvement, or isolated CNS involvement. Endpoints were the proportion of patients with complete response at 28 days after infusion, Kaplan-Meier analysis of relapse-free survival and overall survival, and the incidence of cytokine release syndrome and neurotoxicity.</p>

<p><strong>FINDINGS: </strong>Of all 195 patients, 66 (34%) were categorised as having CNS-positive disease and 129 (66%) as having CNS-negative disease, and 43 (22%) were categorised as having isolated CNS involvement. The median length of follow-up was 39 months (IQR 25-49) in the CNS-positive stratum and 36 months (18-49) in the CNS-negative stratum. The proportion of patients in the CNS-positive stratum with a complete response at 28 days after infusion was similar to that in the CNS-negative stratum (64 [97%] of 66 vs 121 [94%] of 129; p=0·74), with no significant difference in relapse-free survival (60% [95% CI 49-74] vs 60% [51-71]; p=0·50) or overall survival (83% [75-93] vs 71% [64-79]; p=0·39) at 2 years between the two groups. Overall survival at 2 years was significantly higher in patients with isolated CNS involvement compared with those with bone marrow involvement (91% [82-100] vs 71% [64-78]; p=0·046). The incidence and severity of neurotoxicity (any grade, 53 [41%] vs 38 [58%]; grade 1, 24 [19%] vs 20 [30%]; grade 2, 14 [11%] vs 10 [15%]; grade 3, 12 [9%] vs 6 [9%], and grade 4, 3 [2%] vs 2 [3%]; p=0·20) and cytokine release syndrome (any grade, 110 [85%] vs 53 [80%]; grade 1, 12 [9%] vs 2 [3%]; grade 2, 61 [47%] vs 38 [58%]; grade 3, 18 [14%] vs 7 [11%] and grade 4, 19 [15%] vs 6 [9%]; p=0·26) did not differ between the CNS-negative and the CNS-positive disease strata.</p>

<p><strong>INTERPRETATION: </strong>Tisagenlecleucel and huCART19 are active at clearing CNS disease and maintaining durable remissions in children and young adults with CNS relapsed or refractory B-cell acute lymphocytic leukaemia or lymphocytic lymphoma, without increasing the risk of severe neurotoxicity; although care should be taken in the timing of therapy and disease control to mitigate this risk. These preliminary findings support the use of these CAR T-cell therapies for patients with CNS relapsed or refractory B-cell acute lymphocytic leukaemia.</p>

<p><strong>FUNDING: </strong>Children's Hospital of Philadelphia Frontier Program.</p>

DOI

10.1016/S2352-3026(21)00238-6

Alternate Title

Lancet Haematol

PMID

34560014

Title

Humanized CD19-Targeted Chimeric Antigen Receptor (CAR) T Cells in CAR-Naive and CAR-Exposed Children and Young Adults With Relapsed or Refractory Acute Lymphoblastic Leukemia.

Year of Publication

2021

Number of Pages

JCO2003458

Date Published

2021 Jun 22

ISSN Number

1527-7755

Abstract

<p><strong>PURPOSE: </strong>CD19-targeted chimeric antigen receptor (CAR)-modified T cells demonstrate unprecedented responses in B-cell acute lymphoblastic leukemia (B-ALL); however, relapse remains a substantial challenge. Short CAR T-cell persistence contributes to this risk; therefore, strategies to improve persistence are needed.</p>

<p><strong>METHODS: </strong>We conducted a pilot clinical trial of a humanized CD19 CAR T-cell product (huCART19) in children and young adults with relapsed or refractory B-ALL (n = 72) or B-lymphoblastic lymphoma (n = 2), treated in two cohorts: with (retreatment, n = 33) or without (CAR-naive, n = 41) prior CAR exposure. Patients were monitored for toxicity, response, and persistence of huCART19.</p>

<p><strong>RESULTS: </strong>Seventy-four patients 1-29 years of age received huCART19. Cytokine release syndrome developed in 62 (84%) patients and was grade 4 in five (6.8%). Neurologic toxicities were reported in 29 (39%), three (4%) grade 3 or 4, and fully resolved in all cases. The overall response rate at 1 month after infusion was 98% (100% in B-ALL) in the CAR-naive cohort and 64% in the retreatment cohort. At 6 months, the probability of losing huCART19 persistence was 27% (95% CI, 14 to 41) for CAR-naive and 48% (95% CI, 30 to 64) for retreatment patients, whereas the incidence of B-cell recovery was 15% (95% CI, 6 to 28) and 58% (95% CI, 33 to 77), respectively. Relapse-free survival at 12 and 24 months, respectively, was 84% (95% CI, 72 to 97) and 74% (95% CI, 60 to 90) in CAR-naive and 74% (95% CI, 56 to 97) and 58% (95% CI, 37 to 90) in retreatment cohorts.</p>

<p><strong>CONCLUSION: </strong>HuCART19 achieved durable remissions with long-term persistence in children and young adults with relapsed or refractory B-ALL, including after failure of prior CAR T-cell therapy.</p>

DOI

10.1200/JCO.20.03458

Alternate Title

J Clin Oncol

PMID

34156874

Title

Presentation acuity, induction mortality, and resource utilization in infants with acute leukemia.

Year of Publication

2021

Number of Pages

e28940

Date Published

2021 Mar 11

ISSN Number

1545-5017

Abstract

<p><strong>BACKGROUND: </strong>Treatment of infants with acute leukemia remains challenging, especially for acute lymphocytic leukemia (ALL). Infants have shown markedly higher rates of induction mortality compared with noninfants. There are limited data on presentation acuity and supportive care utilization in this age group.</p>

<p><strong>METHODS: </strong>In retrospective analyses of patients treated for new onset ALL or acute myeloid leukemia (AML) at pediatric hospitals contributing to the Pediatric Health Information System, we compared presentation acuity, induction mortality, and resource utilization in infants relative to noninfants less than 10&nbsp;years at diagnosis.</p>

<p><strong>RESULTS: </strong>Analyses included 10&nbsp;359 children with ALL (405 infants, 9954 noninfants) and 871 AML (189 infants, 682 noninfants). Infants were more likely to present with multisystem organ failure compared to noninfants for both ALL (12% and 1%, PR&nbsp;=&nbsp;10.8, 95% CI: 7.4, 15.7) and AML (6% vs. 3%; PR&nbsp;=&nbsp;2.0, 95% CI: 1.0, 3.7). Infants with ALL had higher induction mortality compared to noninfants, even after accounting for differences in anthracycline exposure and presentation acuity (2.7% vs. 0.5%, HR&nbsp;=&nbsp;2.1, 95% CI: 1.0, 4.8). Conversely, infants and noninfants with AML had similar rates of induction mortality (3.2% vs. 2.1%, HR&nbsp;=&nbsp;1.2, 95% CI: 0.3, 3.9), which were comparable to rates among infants with ALL. Infants with ALL and AML had greater requirements for blood products, diuretics, supplemental oxygen, and ventilation during induction relative to noninfants.</p>

<p><strong>CONCLUSIONS: </strong>Infants with leukemia present with higher acuity compared with noninfants. Induction mortality and supportive care requirements for infants with ALL were similar to all children with AML, and significantly higher than those for noninfants with ALL.</p>

DOI

10.1002/pbc.28940

Alternate Title

Pediatr Blood Cancer

PMID

33704911

Title

Risk-Adapted Preemptive Tocilizumab to Prevent Severe Cytokine Release Syndrome After CTL019 for Pediatric B-Cell Acute Lymphoblastic Leukemia: A Prospective Clinical Trial.

Year of Publication

2021

Number of Pages

JCO2002477

Date Published

2021 Jan 08

ISSN Number

1527-7755

Abstract

<p><strong>PURPOSE: </strong>To prospectively evaluate the effectiveness of risk-adapted preemptive tocilizumab (PT) administration in preventing severe cytokine release syndrome (CRS) after CTL019, a CD19 chimeric antigen receptor T-cell therapy.</p>

<p><strong>METHODS: </strong>Children and young adults with CD19-positive relapsed or refractory B-cell acute lymphoblastic leukemia were assigned to high- (≥ 40%) or low- (&lt; 40%) tumor burden cohorts (HTBC or LTBC) based on a bone marrow aspirate or biopsy before infusion. HTBC patients received a single dose of tocilizumab (8-12 mg/kg) after development of high, persistent fevers. LTBC patients received standard CRS management. The primary end point was the frequency of grade 4 CRS (Penn scale), with an observed rate of ≤ 5 of 15 patients in the HTBC pre-defined as clinically meaningful. In post hoc analyses, the HTBC was compared with a historical cohort of high-tumor burden patients from the initial phase I CTL019 trial.</p>

<p><strong>RESULTS: </strong>The primary end point was met. Seventy patients were infused with CTL019, 15 in the HTBC and 55 in the LTBC. All HTBC patients received the PT intervention. The incidence of grade 4 CRS was 27% (95% CI, 8 to 55) in the HTBC and 3.6% (95% CI, 0.4 to 13) in the LTBC. The best overall response rate was 87% in the HTBC and 100% in the LTBC. Initial CTL019 expansion was greater in the HTBC than the LTBC ( &lt; .001), but persistence was not different ( = .73). Event-free and overall survival were worse in the HTBC ( = .004, &lt; .001, respectively). In the post hoc analysis, grade 4 CRS was observed in 27% versus 50% of patients in the PT and prior phase I cohorts, respectively ( = .18).</p>

<p><strong>CONCLUSION: </strong>Risk-adapted PT administration resulted in a decrease in the expected incidence of grade 4 CRS, meeting the study end point, without adversely impacting the antitumor efficacy or safety of CTL019.</p>

DOI

10.1200/JCO.20.02477

Alternate Title

J Clin Oncol

PMID

33417474

WATCH THIS PAGE

Subscription is not available for this page.