First name
Natalka
Last name
Koterba

Title

Temperature Trajectory Sub-Phenotypes and The Immuno-Inflammatory Response In Pediatric Sepsis.

Year of Publication

2021

Number of Pages

Date Published

2021 Dec 27

ISSN Number

1540-0514

Abstract

<p><strong>OBJECTIVE: </strong>Heterogeneity has hampered sepsis trials, and sub-phenotyping may assist with enrichment strategies. However, biomarker-based strategies are difficult to operationalize. Four sub-phenotypes defined by distinct temperature trajectories in the first 72 hours have been reported in adult sepsis. Given the distinct epidemiology of pediatric sepsis, the existence and relevance of temperature trajectory-defined sub-phenotypes in children is unknown. We aimed to classify septic children into de novo sub-phenotypes derived from temperature trajectories in the first 72 hours, and compare cytokine, immune function, and immunometabolic markers across subgroups.</p>

<p><strong>METHODS: </strong>This was a secondary analysis of a prospective cohort of 191 critically ill septic children recruited from a single academic pediatric intensive care unit. We performed group-based trajectory modeling using temperatures over the first 72 hours of sepsis to identify latent profiles. We then used mixed effects regression to determine if temperature trajectory-defined sub-phenotypes were associated with cytokine levels, immune function, and mitochondrial respiration.</p>

<p><strong>RESULTS: </strong>We identified four temperature trajectory-defined sub-phenotypes: hypothermic, normothermic, hyperthermic fast-resolvers, and hyperthermic slow-resolvers. Hypothermic patients were less often previously healthy and exhibited lower levels of pro- and anti-inflammatory cytokines and chemokines. Hospital mortality did not differ between hypothermic children (17%) and other sub-phenotypes (3 to 11%; p = 0.26).</p>

<p><strong>CONCLUSIONS: </strong>Critically ill septic children can be categorized into temperature trajectory-defined sub-phenotypes that parallel adult sepsis. Hypothermic children exhibit a blunted cytokine and chemokine profile. Group-based trajectory modeling has utility for identifying subtypes of clinical syndromes by incorporating readily available longitudinal data, rather than relying on inputs from a single timepoint.</p>

DOI

10.1097/SHK.0000000000001906

Alternate Title

Shock

PMID

35066512
Inner Banner
Publication Image
Inner Banner
Publication Image

Title

Diagnostic biomarkers to differentiate sepsis from cytokine release syndrome in critically ill children.

Year of Publication

2020

Number of Pages

5174-5183

Date Published

2020 Oct 27

ISSN Number

2473-9537

Abstract

<p>Chimeric antigen receptor (CAR) T-cells directed against CD19 have drastically altered outcomes for children with relapsed and refractory acute lymphoblastic leukemia (r/r ALL). Pediatric patients with r/r ALL treated with CAR-T are at increased risk of both cytokine release syndrome (CRS) and sepsis. We sought to investigate the biologic differences between CRS and sepsis and to develop predictive models which could accurately differentiate CRS from sepsis at the time of critical illness. We identified 23 different cytokines that were significantly different between patients with sepsis and CRS. Using elastic net prediction modeling and tree classification, we identified cytokines that were able to classify subjects as having CRS or sepsis accurately. A markedly elevated interferon γ (IFNγ) or a mildly elevated IFNγ in combination with a low IL1β were associated with CRS. A normal to mildly elevated IFNγ in combination with an elevated IL1β was associated with sepsis. This combination of IFNγ and IL1β was able to categorize subjects as having CRS or sepsis with 97% accuracy. As CAR-T therapies become more common, these data provide important novel information to better manage potential associated toxicities.</p>

DOI

10.1182/bloodadvances.2020002592

Alternate Title

Blood Adv

PMID

33095872
Inner Banner
Publication Image
Inner Banner
Publication Image