First name
Mark
Middle name
W
Last name
Russell

Title

Left Ventricular Systolic Dysfunction in Patients Diagnosed With Hypertrophic Cardiomyopathy During Childhood: Insights From the SHaRe Registry (Sarcomeric Human Cardiomyopathy).

Year of Publication

2023

Number of Pages

Date Published

05/2023

ISSN Number

1524-4539

Abstract

BACKGROUND: The development of left ventricular systolic dysfunction (LVSD) in hypertrophic cardiomyopathy (HCM) is rare but serious and associated with poor outcomes in adults. Little is known about the prevalence, predictors, and prognosis of LVSD in patients diagnosed with HCM as children.

METHODS: Data from patients with HCM in the international, multicenter SHaRe Registry (Sarcomeric Human Cardiomyopathy) were analyzed. LVSD was defined as left ventricular ejection fraction <50% on echocardiographic reports. Prognosis was assessed by a composite of death, cardiac transplantation, and left ventricular assist device implantation. Predictors of developing incident LVSD and subsequent prognosis with LVSD were assessed using Cox proportional hazards models.

RESULTS: We studied 1010 patients diagnosed with HCM during childhood (<18 years of age) and compared them with 6741 patients with HCM diagnosed as adults. In the pediatric HCM cohort, median age at HCM diagnosis was 12.7 years (interquartile range, 8.0-15.3), and 393 (36%) patients were female. At initial SHaRe Registry site evaluation, 56 (5.5%) patients with childhood-diagnosed HCM had prevalent LVSD, and 92 (9.1%) developed incident LVSD during a median follow-up of 5.5 years. Overall LVSD prevalence was 14.7% compared with 8.7% in patients with adult-diagnosed HCM. Median age at incident LVSD was 32.6 years (interquartile range, 21.3-41.6) for the pediatric cohort and 57.2 years (interquartile range, 47.3-66.5) for the adult cohort. Predictors of developing incident LVSD in childhood-diagnosed HCM included age <12 years at HCM diagnosis (hazard ratio [HR], 1.72 [CI, 1.13-2.62), male sex (HR, 3.1 [CI, 1.88-5.2), carrying a pathogenic sarcomere variant (HR, 2.19 [CI, 1.08-4.4]), previous septal reduction therapy (HR, 2.34 [CI, 1.42-3.9]), and lower initial left ventricular ejection fraction (HR, 1.53 [CI, 1.38-1.69] per 5% decrease). Forty percent of patients with LVSD and HCM diagnosed during childhood met the composite outcome, with higher rates in female participants (HR, 2.60 [CI, 1.41-4.78]) and patients with a left ventricular ejection fraction <35% (HR, 3.76 [2.16-6.52]).

CONCLUSIONS: Patients with childhood-diagnosed HCM have a significantly higher lifetime risk of developing LVSD, and LVSD emerges earlier than for patients with adult-diagnosed HCM. Regardless of age at diagnosis with HCM or LVSD, the prognosis with LVSD is poor, warranting careful surveillance for LVSD, especially as children with HCM transition to adult care.

DOI

10.1161/CIRCULATIONAHA.122.062517

Alternate Title

Circulation

PMID

37226762
Inner Banner
Publication Image
Featured Publication
No
Inner Banner
Publication Image

Title

Transforming Growth Factor-β Analysis of the VANISH Trial Cohort.

Year of Publication

2023

Number of Pages

e010314

Date Published

04/2023

ISSN Number

1941-3297

DOI

10.1161/CIRCHEARTFAILURE.122.010314

Alternate Title

Circ Heart Fail

PMID

36999957
Inner Banner
Publication Image
Featured Publication
No
Inner Banner
Publication Image

Title

Transforming Growth Factor-β Analysis of the VANISH Trial Cohort.

Year of Publication

2023

Number of Pages

e010314

Date Published

04/2023

ISSN Number

1941-3297

DOI

10.1161/CIRCHEARTFAILURE.122.010314

Alternate Title

Circ Heart Fail

PMID

36999957
Inner Banner
Publication Image
Featured Publication
No
Inner Banner
Publication Image

Title

Transforming Growth Factor-β Analysis of the VANISH Trial Cohort.

Year of Publication

2023

Number of Pages

e010314

Date Published

03/2023

ISSN Number

1941-3297

DOI

10.1161/CIRCHEARTFAILURE.122.010314

Alternate Title

Circ Heart Fail

PMID

36999957
Inner Banner
Publication Image
Featured Publication
No
Inner Banner
Publication Image

Title

Valsartan in early-stage hypertrophic cardiomyopathy: a randomized phase 2 trial.

Year of Publication

2021

Number of Pages

Date Published

2021 Sep 23

ISSN Number

1546-170X

Abstract

<p>Hypertrophic cardiomyopathy (HCM) is often caused by pathogenic variants in sarcomeric genes and characterized by left ventricular (LV) hypertrophy, myocardial fibrosis and increased risk of heart failure and arrhythmias. There are no existing therapies to modify disease progression. In this study, we conducted a multi-center, double-blind, placebo-controlled phase 2 clinical trial to assess the safety and efficacy of the angiotensin II receptor blocker valsartan in attenuating disease evolution in early HCM. In total, 178 participants with early-stage sarcomeric HCM were randomized (1:1) to receive valsartan (320 mg daily in adults; 80-160 mg daily in children) or placebo for 2 years ( NCT01912534 ). Standardized changes from baseline to year 2 in LV wall thickness, mass and volumes; left atrial volume; tissue Doppler diastolic and systolic velocities; and serum levels of high-sensitivity troponin T and N-terminal pro-B-type natriuretic protein were integrated into a single composite z-score as the primary outcome. Valsartan (n = 88) improved cardiac structure and function compared to placebo (n = 90), as reflected by an increase in the composite z-score (between-group difference +0.231, 95% confidence interval (+0.098, +0.364); P = 0.001), which met the primary endpoint of the study. Treatment was well-tolerated. These results indicate a key opportunity to attenuate disease progression in early-stage sarcomeric HCM with an accessible and safe medication.</p>

DOI

10.1038/s41591-021-01505-4

Alternate Title

Nat Med

PMID

34556856
Inner Banner
Publication Image
Inner Banner
Publication Image

Title

A Validated Model for Sudden Cardiac Death Risk Prediction in Pediatric Hypertrophic Cardiomyopathy.

Year of Publication

2020

Number of Pages

Date Published

2020 May 18

ISSN Number

1524-4539

Abstract

<p>Hypertrophic cardiomyopathy (HCM) is the leading cause of sudden cardiac death (SCD) in children and young adults. Our objective was to develop and validate a SCD risk prediction model in pediatric HCM to guide SCD prevention strategies. In an international multi-center observational cohort study, phenotype-positive patients with isolated HCM &lt;18 years at diagnosis were eligible. The primary outcome variable was the time from diagnosis to a composite of SCD events at 5-year follow-up: SCD, resuscitated sudden cardiac arrest (SCA), and aborted SCD, i.e. appropriate shock following primary prevention ICD. Competing risk models with cause-specific hazard regression were used to identify and quantify clinical and genetic factors associated with SCD. The cause-specific regression model was implemented using boosting, and tuned with ten repeated four-fold cross-validations. The final model was fitted using all data with the tuned hyperparameter value that maximizes the c-statistic, and its performance was characterized using c-statistic for competing risk models. The final model was validated in an independent external cohort (SHaRe, n=285). Overall, 572 patients met eligibility criteria with 2855 patient-years of follow-up. The 5-year cumulative proportion of SCD events was 9.1% (14 SCD, 25 resuscitated SCA, 14 aborted SCD). Risk predictors included age at diagnosis, documented non-sustained ventricular tachycardia, unexplained syncope, septal diameter z-score, LV posterior wall diameter z-score, LA diameter z-score, peak LV outflow tract (LVOT) gradient, and presence of a pathogenic variant. Unlike adults, LVOT gradient had an inverse association, and family history of SCD had no association with SCD. Clinical and clinical/genetic models were developed to predict 5-year freedom from SCD. Both models adequately discriminated patients with and without SCD events with a c-statistic of 0.75 and 0.76 respectively and demonstrated good agreement between predicted and observed events in the primary and validation cohorts (validation c-statistic 0.71 and 0.72 respectively). Our study provides a validated SCD risk prediction model with over 70% prediction accuracy and incorporates risk factors that are unique to pediatric HCM. An individualized risk prediction model has the potential to improve the application of clinical practice guidelines and shared decision-making for ICD insertion. URL: https://clinicaltrials.gov Unique Identifier: NCT04036799.</p>

DOI

10.1161/CIRCULATIONAHA.120.047235

Alternate Title

Circulation

PMID

32418493
Inner Banner
Publication Image
Inner Banner
Publication Image