First name
Frederic
Middle name
D
Last name
Bushman

Title

SARS-CoV-2 variants associated with vaccine breakthrough in the Delaware Valley through summer 2021.

Year of Publication

2021

Date Published

2021 Oct 20

Abstract

<p>The severe acute respiratory coronavirus-2 (SARS-CoV-2) is the cause of the global outbreak of COVID-19. Evidence suggests that the virus is evolving to allow efficient spread through the human population, including vaccinated individuals. Here we report a study of viral variants from surveillance of the Delaware Valley, including the city of Philadelphia, and variants infecting vaccinated subjects. We sequenced and analyzed complete viral genomes from 2621 surveillance samples from March 2020 to September 2021 and compared them to genome sequences from 159 vaccine breakthroughs. In the early spring of 2020, all detected variants were of the B.1 and closely related lineages. A mixture of lineages followed, notably including B.1.243 followed by B.1.1.7 (alpha), with other lineages present at lower levels. Later isolations were dominated by B.1.617.2 (delta) and other delta lineages; delta was the exclusive variant present by the last time sampled. To investigate whether any variants appeared preferentially in vaccine breakthroughs, we devised a model based on Bayesian autoregressive moving average logistic multinomial regression to allow rigorous comparison. This revealed that B.1.617.2 (delta) showed three-fold enrichment in vaccine breakthrough cases (odds ratio of 3; 95% credible interval 0.89-11). Viral point substitutions could also be associated with vaccine breakthroughs, notably the N501Y substitution found in the alpha, beta and gamma variants (odds ratio 2.04; 95% credible interval of 1.25-3.18). This study thus provides a detailed picture of viral evolution in the Delaware Valley and a geographically matched analysis of vaccine breakthroughs; it also introduces a rigorous statistical approach to interrogating enrichment of viral variants.</p>

<p><strong>Importance: </strong>SARS-CoV-2 vaccination is highly effective at reducing viral infection, hospitalization and death. However, vaccine breakthrough infections have been widely observed, raising the question of whether particular viral variants or viral mutations are associated with breakthrough. Here we report analysis of 2621 surveillance isolates from xsxpeople diagnosed with COVID-19 in the Delaware Valley in South Eastern Pennsylvania, allowing rigorous comparison to 159 vaccine breakthrough case specimens. Our best estimate is a three-fold enrichment for some lineages of delta among breakthroughs, and enrichment of a notable spike substitution, N501Y. We introduce statistical methods that should be widely useful for evaluating vaccine breakthroughs and other viral phenotypes.</p>

DOI

10.1101/2021.10.18.21264623

Alternate Title

medRxiv

PMID

34704098

Title

SARS-CoV-2 Variants Associated with Vaccine Breakthrough in the Delaware Valley through Summer 2021.

Year of Publication

2022

Number of Pages

e0378821

Date Published

2022 Feb 08

ISSN Number

2150-7511

Abstract

<p>The severe acute respiratory coronavirus-2 (SARS-CoV-2) is the cause of the global outbreak of COVID-19. Evidence suggests that the virus is evolving to allow efficient spread through the human population, including vaccinated individuals. Here, we report a study of viral variants from surveillance of the Delaware Valley, including the city of Philadelphia, and variants infecting vaccinated subjects. We sequenced and analyzed complete viral genomes from 2621 surveillance samples from March 2020 to September 2021 and compared them to genome sequences from 159 vaccine breakthroughs. In the early spring of 2020, all detected variants were of the B.1 and closely related lineages. A mixture of lineages followed, notably including B.1.243 followed by B.1.1.7 (alpha), with other lineages present at lower levels. Later isolations were dominated by B.1.617.2 (delta) and other delta lineages; delta was the exclusive variant present by the last time sampled. To investigate whether any variants appeared preferentially in vaccine breakthroughs, we devised a model based on Bayesian autoregressive moving average logistic multinomial regression to allow rigorous comparison. This revealed that B.1.617.2 (delta) showed 3-fold enrichment in vaccine breakthrough cases (odds ratio of 3; 95% credible interval 0.89-11). Viral point substitutions could also be associated with vaccine breakthroughs, notably the N501Y substitution found in the alpha, beta and gamma variants (odds ratio 2.04; 95% credible interval of1.25-3.18). This study thus overviews viral evolution and vaccine breakthroughs in the Delaware Valley and introduces a rigorous statistical approach to interrogating enrichment of breakthrough variants against a changing background. SARS-CoV-2 vaccination is highly effective at reducing viral infection, hospitalization and death. However, vaccine breakthrough infections have been widely observed, raising the question of whether particular viral variants or viral mutations are associated with breakthrough. Here, we report analysis of 2621 surveillance isolates from people diagnosed with COVID-19 in the Delaware Valley in southeastern Pennsylvania, allowing rigorous comparison to 159 vaccine breakthrough case specimens. Our best estimate is a 3-fold enrichment for some lineages of delta among breakthroughs, and enrichment of a notable spike substitution, N501Y. We introduce statistical methods that should be widely useful for evaluating vaccine breakthroughs and other viral phenotypes.</p>

DOI

10.1128/mbio.03788-21

Alternate Title

mBio

PMID

34704098

Title

Comparative Analysis of Emerging B.1.1.7+E484K SARS-CoV-2 Isolates.

Year of Publication

2021

Number of Pages

ofab300

Date Published

2021 Jul

ISSN Number

2328-8957

Abstract

<p>We report the genome of a B.1.1.7+E484K severe acute respiratory syndrome coronavirus 2 from Southeastern Pennsylvania and compare it with all high-coverage B.1.1.7+E484K genomes (n = 235) available. Analyses showed the existence of at least 4 distinct clades of this variant circulating in the United States and the possibility of at least 59 independent acquisitions of the E484K mutation.</p>

DOI

10.1093/ofid/ofab300

Alternate Title

Open Forum Infect Dis

PMID

34254040

Title

Decreased Intestinal Microbiome Diversity in Pediatric Sepsis: A Conceptual Framework for Intestinal Dysbiosis to Influence Immunometabolic Function.

Year of Publication

2021

Number of Pages

e0360

Date Published

2021 Mar

ISSN Number

2639-8028

Abstract

<p><b>Objectives: </b>The intestinal microbiome can modulate immune function through production of microbial-derived short-chain fatty acids. We explored whether intestinal dysbiosis in children with sepsis leads to changes in microbial-derived short-chain fatty acids in plasma and stool that are associated with immunometabolic dysfunction in peripheral blood mononuclear cells.</p><p><b>Design: </b>Prospective observational pilot study.</p><p><b>Setting: </b>Single academic PICU.</p><p><b>Patients: </b>Forty-three children with sepsis/septic shock and 44 healthy controls.</p><p><b>Measurements and Main Results: </b>Stool and plasma samples were serially collected for sepsis patients; stool was collected once for controls. The intestinal microbiome was assessed using 16S ribosomal RNA sequencing and alpha- and beta-diversity were determined. We measured short-chain fatty acids using liquid chromatography, peripheral blood mononuclear cell mitochondrial respiration using high-resolution respirometry, and immune function using ex vivo lipopolysaccharide-stimulated whole blood tumor necrosis factor-α. Sepsis patients exhibited reduced microbial diversity compared with healthy controls, with lower alpha- and beta-diversity. Reduced microbial diversity among sepsis patients (mainly from lower abundance of commensal obligate anaerobes) was associated with increased acetic and propionic acid and decreased butyric, isobutyric, and caproic acid. Decreased levels of plasma butyric acid were further associated with lower peripheral blood mononuclear cell mitochondrial respiration, which in turn, was associated with lower lipopolysaccharide-stimulated tumor necrosis factor-α. However, neither intestinal dysbiosis nor specific patterns of short-chain fatty acids were associated with lipopolysaccharide-stimulated tumor necrosis factor-α.</p><p><b>Conclusions: </b>Intestinal dysbiosis was associated with altered short-chain fatty acid metabolites in children with sepsis, but these findings were not linked directly to mitochondrial or immunologic changes. More detailed mechanistic studies are needed to test the role of microbial-derived short-chain fatty acids in the progression of sepsis.</p>

DOI

10.1097/CCE.0000000000000360

Alternate Title

Crit Care Explor

PMID

33786436

Title

Multi-omic Analysis of the Interaction between Clostridioides difficile Infection and Pediatric Inflammatory Bowel Disease.

Year of Publication

2020

Date Published

2020 Aug 11

ISSN Number

1934-6069

Abstract

<p>Children with inflammatory bowel diseases (IBD) are particularly vulnerable to infection with Clostridioides difficile (CDI). IBD and IBD&nbsp;+ CDI have overlapping symptoms but respond to distinctive treatments, highlighting the need for diagnostic biomarkers. Here, we studied pediatric patients with IBD and IBD&nbsp;+ CDI, comparing longitudinal data on the gut microbiome, metabolome, and other measures. The microbiome is dysbiotic and heterogeneous in both disease states, but the metabolome reveals disease-specific patterns. The IBD group shows increased concentrations of markers of inflammation and tissue damage compared with healthy controls, and metabolic changes associate with susceptibility to CDI. In IBD&nbsp;+ CDI, we detect both metabolites associated with inflammation/tissue damage and fermentation products produced by C.&nbsp;difficile. The most discriminating metabolite found is isocaproyltaurine, a covalent conjugate of a distinctive C.&nbsp;difficile fermentation product (isocaproate) and an amino acid associated with tissue damage (taurine), which may be useful as a joint marker of the two disease processes.</p>

DOI

10.1016/j.chom.2020.07.020

Alternate Title

Cell Host Microbe

PMID

32822584

Title

The stepwise assembly of the neonatal virome is modulated by breastfeeding.

Year of Publication

2020

Number of Pages

470-474

Date Published

2020 May

ISSN Number

1476-4687

Abstract

<p>The gut of healthy human neonates is usually devoid of viruses at birth, but quickly becomes colonized, which-in some cases-leads to gastrointestinal disorders. Here we show that the assembly of the viral community in neonates takes place in distinct steps. Fluorescent staining of virus-like particles purified from infant meconium or early stool samples shows few or no particles, but by one month of life particle numbers increase to 10 per gram, and these numbers seem to persist throughout life. We investigated the origin of these viral populations using shotgun metagenomic sequencing of virus-enriched preparations and whole microbial communities, followed by targeted microbiological analyses. Results indicate that, early after birth, pioneer bacteria colonize the infant gut and by one month prophages induced from these bacteria provide the predominant population of virus-like particles. By four months of life, identifiable viruses that replicate in human cells become more prominent. Multiple human viruses were more abundant in stool samples from babies who were exclusively fed on&nbsp;formula milk compared with those fed partially or fully on breast milk, paralleling reports that breast milk can be protective against viral infections. Bacteriophage populations also differed depending on whether or not the infant was breastfed. We show that the colonization of the infant gut is stepwise, first mainly by temperate bacteriophages induced from pioneer bacteria, and later by viruses that replicate in human cells; this second phase is modulated by breastfeeding.</p>

DOI

10.1038/s41586-020-2192-1

Alternate Title

Nature

PMID

32461640

Title

Bacterial colonization reprograms the neonatal gut metabolome.

Year of Publication

2020

Date Published

2020 Apr 13

ISSN Number

2058-5276

Abstract

<p>Initial microbial colonization and later succession in the gut of human infants are linked to health and disease later in life. The timing of the appearance of the first gut microbiome, and the consequences for the early life metabolome, are just starting to be defined. Here, we evaluated the gut microbiome, proteome and metabolome in 88 African-American newborns using faecal samples collected in the first few days of life. Gut bacteria became detectable using molecular methods by 16 h after birth. Detailed analysis of the three most common species, Escherichia coli, Enterococcus faecalis and Bacteroides vulgatus, did not suggest a genomic signature for neonatal gut colonization. The appearance of bacteria was associated with reduced abundance of approximately 50 human proteins, decreased levels of free amino acids and an increase in products of bacterial fermentation, including acetate and succinate. Using flux balance modelling and in vitro experiments, we provide evidence that fermentation of amino acids provides a mechanism for the initial growth of E. coli, the most common early colonizer, under anaerobic conditions. These results provide a deep characterization of the first microbes in the human gut and show how the biochemical environment is altered by their appearance.</p>

DOI

10.1038/s41564-020-0694-0

Alternate Title

Nat Microbiol

PMID

32284564

WATCH THIS PAGE

Subscription is not available for this page.