First name
Michael
Middle name
J G
Last name
Somers

Title

Evaluating Kidney Function Decline in Children with Chronic Kidney Disease Using a Multi-Institutional Electronic Health Record Database.

Year of Publication

2023

Number of Pages

173-182

Date Published

02/2023

ISSN Number

1555-905X

Abstract

BACKGROUND: The objectives of this study were to use electronic health record data from a US national multicenter pediatric network to identify a large cohort of children with CKD, evaluate CKD progression, and examine clinical risk factors for kidney function decline.

METHODS: This retrospective cohort study identified children seen between January 1, 2009, to February 28, 2022. Data were from six pediatric health systems in PEDSnet. We identified children aged 18 months to 18 years who met criteria for CKD: two eGFR values <90 and ≥15 ml/min per 1.73 m2 separated by ≥90 days without an intervening value ≥90. CKD progression was defined as a composite outcome: eGFR <15 ml/min per 1.73 m2, ≥50% eGFR decline, long-term dialysis, or kidney transplant. Subcohorts were defined based on CKD etiology: glomerular, nonglomerular, or malignancy. We assessed the association of hypertension (≥2 visits with hypertension diagnosis code) and proteinuria (≥1 urinalysis with ≥1+ protein) within 2 years of cohort entrance on the composite outcome.

RESULTS: Among 7,148,875 children, we identified 11,240 (15.7 per 10,000) with CKD (median age 11 years, 50% female). The median follow-up was 5.1 (interquartile range 2.8-8.3) years, the median initial eGFR was 75.3 (interquartile range 61-83) ml/min per 1.73 m2, 37% had proteinuria, and 35% had hypertension. The following were associated with CKD progression: lower eGFR category (adjusted hazard ratio [aHR] 1.44 [95% confidence interval (95% CI), 1.23 to 1.69], aHR 2.38 [95% CI, 2.02 to 2.79], aHR 5.75 [95% CI, 5.05 to 6.55] for eGFR 45-59 ml/min per 1.73 m2, 30-44 ml/min per 1.73 m2, 15-29 ml/min per 1.73 m2 at cohort entrance, respectively, when compared with eGFR 60-89 ml/min per 1.73 m2), glomerular disease (aHR 2.01 [95% CI, 1.78 to 2.28]), malignancy (aHR 1.79 [95% CI, 1.52 to 2.11]), proteinuria (aHR 2.23 [95% CI, 1.89 to 2.62]), hypertension (aHR 1.49 [95% CI, 1.22 to 1.82]), proteinuria and hypertension together (aHR 3.98 [95% CI, 3.40 to 4.68]), count of complex chronic comorbidities (aHR 1.07 [95% CI, 1.05 to 1.10] per additional comorbid body system), male sex (aHR 1.16 [95% CI, 1.05 to 1.28]), and younger age at cohort entrance (aHR 0.95 [95% CI, 0.94 to 0.96] per year older).

CONCLUSIONS: In large-scale real-world data for children with CKD, disease etiology, albuminuria, hypertension, age, male sex, lower eGFR, and greater medical complexity at start of follow-up were associated with more rapid decline in kidney function.

DOI

10.2215/CJN.0000000000000051

Alternate Title

Clin J Am Soc Nephrol

PMID

36754006

Title

Using Electronic Health Record Data to Rapidly Identify Children with Glomerular Disease for Clinical Research.

Year of Publication

2019

Number of Pages

2427-2435

Date Published

2019 Dec

ISSN Number

1533-3450

Abstract

<p><strong>BACKGROUND: </strong>The rarity of pediatric glomerular disease makes it difficult to identify sufficient numbers of participants for clinical trials. This leaves limited data to guide improvements in care for these patients.</p>

<p><strong>METHODS: </strong>The authors developed and tested an electronic health record (EHR) algorithm to identify children with glomerular disease. We used EHR data from 231 patients with glomerular disorders at a single center to develop a computerized algorithm comprising diagnosis, kidney biopsy, and transplant procedure codes. The algorithm was tested using PEDSnet, a national network of eight children's hospitals with data on &gt;6.5 million children. Patients with three or more nephrologist encounters (=55,560) not meeting the computable phenotype definition of glomerular disease were defined as nonglomerular cases. A reviewer blinded to case status used a standardized form to review random samples of cases (=800) and nonglomerular cases (=798).</p>

<p><strong>RESULTS: </strong>The final algorithm consisted of two or more diagnosis codes from a qualifying list or one diagnosis code and a pretransplant biopsy. Performance characteristics among the population with three or more nephrology encounters were sensitivity, 96% (95% CI, 94% to 97%); specificity, 93% (95% CI, 91% to 94%); positive predictive value (PPV), 89% (95% CI, 86% to 91%); negative predictive value, 97% (95% CI, 96% to 98%); and area under the receiver operating characteristics curve, 94% (95% CI, 93% to 95%). Requiring that the sum of nephrotic syndrome diagnosis codes exceed that of glomerulonephritis codes identified children with nephrotic syndrome or biopsy-based minimal change nephropathy, FSGS, or membranous nephropathy, with 94% sensitivity and 92% PPV. The algorithm identified 6657 children with glomerular disease across PEDSnet, ≥50% of whom were seen within 18 months.</p>

<p><strong>CONCLUSIONS: </strong>The authors developed an EHR-based algorithm and demonstrated that it had excellent classification accuracy across PEDSnet. This tool may enable faster identification of cohorts of pediatric patients with glomerular disease for observational or prospective studies.</p>

DOI

10.1681/ASN.2019040365

Alternate Title

J. Am. Soc. Nephrol.

PMID

31732612

WATCH THIS PAGE

Subscription is not available for this page.