Leading initial
C
First name
Buddy
Last name
Creech

Title

Using Administrative Billing Codes to Identify Acute Musculoskeletal Infections in Children.

Year of Publication

2023

Number of Pages

182-195

Date Published

02/2023

ISSN Number

2154-1671

Abstract

BACKGROUND AND OBJECTIVES: Acute hematogenous musculoskeletal infections (MSKI) are medical emergencies with the potential for life-altering complications in afflicted children. Leveraging administrative data to study pediatric MSKI is difficult as many infections are chronic, nonhematogenous, or occur in children with significant comorbidities. The objective of this study was to validate a case-finding algorithm to accurately identify children hospitalized with acute hematogenous MSKI using administrative billing codes.

METHODS: This was a multicenter validation study using the Pediatric Health Information System (PHIS) database. Hospital admissions for MSKI were identified from 6 PHIS hospitals using discharge diagnosis codes. A random subset of admissions underwent manual chart review at each site using predefined criteria to categorize each admission as either "acute hematogenous MSKI" (AH-MSKI) or "not acute hematogenous MSKI." Ten unique coding algorithms were developed using billing data. The sensitivity and specificity of each algorithm to identify AH-MSKI were calculated using chart review categorizations as the reference standard.

RESULTS: Of the 492 admissions randomly selected for manual review, 244 (49.6%) were classified as AH-MSKI and 248 (50.4%) as not acute hematogenous MSKI. Individual algorithm performance varied widely (sensitivity 31% to 91%; specificity 52% to 98%). Four algorithms demonstrated potential for future use with receiver operating characteristic area under the curve greater than 80%.

CONCLUSIONS: Identifying children with acute hematogenous MSKI based on discharge diagnosis alone is challenging as half have chronic or nonhematogenous infections. We validated several case-finding algorithms using administrative billing codes and detail them here for future use in pediatric MSKI outcomes.

DOI

10.1542/hpeds.2022-006821

Alternate Title

Hosp Pediatr

PMID

36601701
Inner Banner
Publication Image
Inner Banner
Publication Image

Title

Evaluation of mRNA-1273 Vaccine in Children 6 Months to 5 Years of Age.

Year of Publication

2022

Number of Pages

1673-1687

Date Published

12/2022

ISSN Number

1533-4406

Abstract

BACKGROUND: The safety, reactogenicity, immunogenicity, and efficacy of the mRNA-1273 coronavirus disease 2019 (Covid-19) vaccine in young children are unknown.

METHODS: Part 1 of this ongoing phase 2-3 trial was open label for dose selection; part 2 was an observer-blinded, placebo-controlled evaluation of the selected dose. In part 2, we randomly assigned young children (6 months to 5 years of age) in a 3:1 ratio to receive two 25-μg injections of mRNA-1273 or placebo, administered 28 days apart. The primary objectives were to evaluate the safety and reactogenicity of the vaccine and to determine whether the immune response in these children was noninferior to that in young adults (18 to 25 years of age) in a related phase 3 trial. Secondary objectives were to determine the incidences of Covid-19 and severe acute respiratory syndrome coronavirus 2 infection after administration of mRNA-1273 or placebo.

RESULTS: On the basis of safety and immunogenicity results in part 1 of the trial, the 25-μg dose was evaluated in part 2. In part 2, 3040 children 2 to 5 years of age and 1762 children 6 to 23 months of age were randomly assigned to receive two 25-μg injections of mRNA-1273; 1008 children 2 to 5 years of age and 593 children 6 to 23 months of age were randomly assigned to receive placebo. The median duration of follow-up after the second injection was 71 days in the 2-to-5-year-old cohort and 68 days in the 6-to-23-month-old cohort. Adverse events were mainly low-grade and transient, and no new safety concerns were identified. At day 57, neutralizing antibody geometric mean concentrations were 1410 (95% confidence interval [CI], 1272 to 1563) among 2-to-5-year-olds and 1781 (95% CI, 1616 to 1962) among 6-to-23-month-olds, as compared with 1391 (95% CI, 1263 to 1531) among young adults, who had received 100-μg injections of mRNA-1273, findings that met the noninferiority criteria for immune responses for both age cohorts. The estimated vaccine efficacy against Covid-19 was 36.8% (95% CI, 12.5 to 54.0) among 2-to-5-year-olds and 50.6% (95% CI, 21.4 to 68.6) among 6-to-23-month-olds, at a time when B.1.1.529 (omicron) was the predominant circulating variant.

CONCLUSIONS: Two 25-μg doses of the mRNA-1273 vaccine were found to be safe in children 6 months to 5 years of age and elicited immune responses that were noninferior to those in young adults. (Funded by the Biomedical Advanced Research and Development Authority and National Institute of Allergy and Infectious Diseases; KidCOVE ClinicalTrials.gov number, NCT04796896.).

DOI

10.1056/NEJMoa2209367

Alternate Title

N Engl J Med

PMID

36260859
Inner Banner
Publication Image
Inner Banner
Publication Image

Title

Evaluation of mRNA-1273 Vaccine in Children 6 Months to 5 Years of Age.

Year of Publication

2022

Number of Pages

Date Published

10/2022

ISSN Number

1533-4406

Abstract

BACKGROUND: The safety, reactogenicity, immunogenicity, and efficacy of the mRNA-1273 coronavirus disease 2019 (Covid-19) vaccine in young children are unknown.

METHODS: Part 1 of this ongoing phase 2-3 trial was open label for dose selection; part 2 was an observer-blinded, placebo-controlled evaluation of the selected dose. In part 2, we randomly assigned young children (6 months to 5 years of age) in a 3:1 ratio to receive two 25-μg injections of mRNA-1273 or placebo, administered 28 days apart. The primary objectives were to evaluate the safety and reactogenicity of the vaccine and to determine whether the immune response in these children was noninferior to that in young adults (18 to 25 years of age) in a related phase 3 trial. Secondary objectives were to determine the incidences of Covid-19 and severe acute respiratory syndrome coronavirus 2 infection after administration of mRNA-1273 or placebo.

RESULTS: On the basis of safety and immunogenicity results in part 1 of the trial, the 25-μg dose was evaluated in part 2. In part 2, 3040 children 2 to 5 years of age and 1762 children 6 to 23 months of age were randomly assigned to receive two 25-μg injections of mRNA-1273; 1008 children 2 to 5 years of age and 593 children 6 to 23 months of age were randomly assigned to receive placebo. The median duration of follow-up after the second injection was 71 days in the 2-to-5-year-old cohort and 68 days in the 6-to-23-month-old cohort. Adverse events were mainly low-grade and transient, and no new safety concerns were identified. At day 57, neutralizing antibody geometric mean concentrations were 1410 (95% confidence interval [CI], 1272 to 1563) among 2-to-5-year-olds and 1781 (95% CI, 1616 to 1962) among 6-to-23-month-olds, as compared with 1391 (95% CI, 1263 to 1531) among young adults, who had received 100-μg injections of mRNA-1273, findings that met the noninferiority criteria for immune responses for both age cohorts. The estimated vaccine efficacy against Covid-19 was 36.8% (95% CI, 12.5 to 54.0) among 2-to-5-year-olds and 50.6% (95% CI, 21.4 to 68.6) among 6-to-23-month-olds, at a time when B.1.1.529 (omicron) was the predominant circulating variant.

CONCLUSIONS: Two 25-μg doses of the mRNA-1273 vaccine were found to be safe in children 6 months to 5 years of age and elicited immune responses that were noninferior to those in young adults. (Funded by the Biomedical Advanced Research and Development Authority and National Institute of Allergy and Infectious Diseases; KidCOVE ClinicalTrials.gov number, NCT04796896.).

DOI

10.1056/NEJMoa2209367

Alternate Title

N Engl J Med

PMID

36260859
Inner Banner
Publication Image
Inner Banner
Publication Image

Title

Comparison of the Respiratory Resistomes and Microbiota in Children Receiving Short versus Standard Course Treatment for Community-Acquired Pneumonia.

Year of Publication

2022

Number of Pages

e0019522

Date Published

2022 Mar 24

ISSN Number

2150-7511

Abstract

<p>Pediatric community-acquired pneumonia (CAP) is often treated with 10 days of antibiotics. Shorter treatment strategies may be effective and lead to less resistance. The impact of duration of treatment on the respiratory microbiome is unknown. Data are from children ( = 171), ages 6 to 71 months, enrolled in the SCOUT-CAP trial (NCT02891915). Children with CAP were randomized to a short (5 days) versus standard (10 days) beta-lactam treatment strategy. Throat swabs were collected at enrollment and the end of the study and used for shotgun metagenomic sequencing. The number of beta-lactam and multidrug efflux resistance genes per prokaryotic cell (RGPC) was significantly lower in children receiving the short compared to standard treatment strategy at the end of the study (Wilcoxon rank sum test,  &lt; 0.05 for each). Wilcoxon effect sizes were small for beta-lactam (: 0.15; 95% confidence interval [CI], 0.01 to 0.29) and medium for multidrug efflux RGPC (: 0.23; 95% CI, 0.09 to 0.37). Analyses comparing the resistome at the beginning and end of the trial indicated that in contrast to the standard strategy group, the resistome significantly differed in children receiving the short course strategy. Relative abundances of commensals such as Neisseria subflava were higher in children receiving the standard strategy, and species and Veillonella parvula were higher in children receiving the short course strategy. We conclude that children receiving 5 days of beta-lactam therapy for CAP had a significantly lower abundance of antibiotic resistance determinants than those receiving standard 10-day treatment. These data provide an additional rationale for reductions in antibiotic use when feasible. Antibiotic resistance is a major threat to public health. Treatment strategies involving shorter antibiotic courses have been proposed as a strategy to lower the potential for antibiotic resistance. We examined relationships between the duration of antibiotic treatment and its impact on resistance genes and bacteria in the respiratory microbiome using data from a randomized controlled trial of beta-lactam therapy for pediatric pneumonia. The randomized design provides reliable evidence of the effectiveness of interventions and minimizes the potential for confounding. Children receiving 5 days of therapy for pneumonia had a lower prevalence of two different types of resistance genes than did those receiving the 10-day treatment. Our data also suggest that children receiving longer durations of therapy have a greater abundance of antibiotic resistance genes for a longer period of time than do children receiving shorter durations of therapy. These data provide an additional rationale for reductions in antibiotic use.</p>

DOI

10.1128/mbio.00195-22

Alternate Title

mBio

PMID

35323040
Inner Banner
Publication Image
Inner Banner
Publication Image

Title

Short- vs Standard-Course Outpatient Antibiotic Therapy for Community-Acquired Pneumonia in Children: The SCOUT-CAP Randomized Clinical Trial.

Year of Publication

2022

Number of Pages

Date Published

2022 Jan 18

ISSN Number

2168-6211

Abstract

<p><strong>Importance: </strong>Childhood community-acquired pneumonia (CAP) is usually treated with 10 days of antibiotics. Shorter courses may be effective with fewer adverse effects and decreased potential for antibiotic resistance.</p>

<p><strong>Objective: </strong>To compare a short (5-day) vs standard (10-day) antibiotic treatment strategy for CAP in young children.</p>

<p><strong>Design, Setting, and Participants: </strong>Randomized double-blind placebo-controlled clinical trial in outpatient clinic, urgent care, or emergency settings in 8 US cities. A total of 380 healthy children aged 6 to 71 months with nonsevere CAP demonstrating early clinical improvement were enrolled from December 2, 2016, to December 16, 2019. Data were analyzed from January to September 2020.</p>

<p><strong>Intervention: </strong>On day 6 of their originally prescribed therapy, participants were randomized 1:1 to receive 5 days of matching placebo or 5 additional days of the same antibiotic.</p>

<p><strong>Main Outcomes and Measures: </strong>The primary end point was the end-of-treatment response adjusted for duration of antibiotic risk (RADAR), a composite end point that ranks each child's clinical response, resolution of symptoms, and antibiotic-associated adverse effects in an ordinal desirability of outcome ranking (DOOR). Within each DOOR rank, participants were further ranked by the number of antibiotic days, assuming that shorter antibiotic durations were more desirable. Using RADAR, the probability of a more desirable outcome was estimated for the short- vs standard-course strategy. In a subset of children, throat swabs were collected between study days 19 and 25 to quantify antibiotic resistance genes in oropharyngeal flora.</p>

<p><strong>Results: </strong>A total of 380 children (189 randomized to short course and 191 randomized to standard course) made up the study population. The mean (SD) age was 35.7 (17.2) months, and 194 participants (51%) were male. Of the included children, 8 were Asian, 99 were Black or African American, 234 were White, 32 were multiracial, and 7 were of unknown or unreported race; 33 were Hispanic or Latino, 344 were not Hispanic or Latino, and 3 were of unknown or unreported ethnicity. There were no differences between strategies in the DOOR or its individual components. Fewer than 10% of children in either strategy had an inadequate clinical response. The short-course strategy had a 69% (95% CI, 63-75) probability of a more desirable RADAR outcome compared with the standard-course strategy. A total of 171 children were included in the resistome analysis. The median (range) number of antibiotic resistance genes per prokaryotic cell (RGPC) was significantly lower in the short-course strategy compared with the standard-course strategy for total RGPC (1.17 [0.35-2.43] vs 1.33 [0.46-11.08]; P = .01) and β-lactamase RGPC (0.55 [0.18-1.24] vs 0.60 [0.21-2.45]; P = .03).</p>

<p><strong>Conclusions and Relevance: </strong>In this study, among children responding to initial treatment for outpatient CAP, a 5-day antibiotic strategy was superior to a 10-day strategy. The shortened approach resulted in similar clinical response and antibiotic-associated adverse effects, while reducing antibiotic exposure and resistance.</p>

<p><strong>Trial Registration: </strong>ClinicalTrials.gov Identifier: NCT02891915.</p>

DOI

10.1001/jamapediatrics.2021.5547

Alternate Title

JAMA Pediatr

PMID

35040920
Inner Banner
Publication Image
Inner Banner
Publication Image

Title

Clinical Practice Guideline by the Pediatric Infectious Diseases Society and the Infectious Diseases Society of America: 2021 Guideline on Diagnosis and Management of Acute Hematogenous Osteomyelitis in Pediatrics.

Year of Publication

2021

Number of Pages

Date Published

2021 Aug 05

ISSN Number

2048-7207

Abstract

<p>This clinical practice guideline for the diagnosis and treatment of acute hematogenous osteomyelitis (AHO) in children was developed by a multidisciplinary panel representing Pediatric Infectious Diseases Society (PIDS) and the Infectious Diseases Society of America (IDSA). This guideline is intended for use by healthcare professionals who care for children with AHO, including specialists in pediatric infectious diseases, orthopedics, emergency care physicians, hospitalists, and any clinicians and healthcare providers caring for these patients. The panel's recommendations for the diagnosis and treatment of AHO are based upon evidence derived from topic-specific systematic literature reviews. Summarized below are the recommendations for the diagnosis and treatment of AHO in children. The panel followed a systematic process used in the development of other IDSA and PIDS clinical practice guidelines, which included a standardized methodology for rating the certainty of the evidence and strength of recommendation using the GRADE (Grading of Recommendations Assessment, Development and Evaluation) approach. A detailed description of background, methods, evidence summary and rationale that support each recommendation, and knowledge gaps can be found online in the full text.</p>

DOI

10.1093/jpids/piab027

Alternate Title

J Pediatric Infect Dis Soc

PMID

34350458
Inner Banner
Publication Image
Inner Banner
Publication Image