First name
Karen
Middle name
R
Last name
Rabin

Title

Racial and ethnic disparities in childhood and young adult acute lymphocytic leukaemia: secondary analyses of eight Children's Oncology Group cohort trials.

Year of Publication

2023

Number of Pages

e129-e141

Date Published

02/2023

ISSN Number

2352-3026

Abstract

BACKGROUND: Previous studies have identified racial and ethnic disparities in childhood acute lymphocytic leukaemia survival. We aimed to establish whether disparities persist in contemporaneous cohorts and, if present, are attributable to differences in leukaemia biology or insurance status.

METHODS: Patients with newly diagnosed acute lymphocytic leukaemia in inpatient and outpatient centres in the USA, Canada, Australia, and New Zealand, aged 0-30 years, who had race or ethnicity data available, enrolled on eight completed Children's Oncology Group trials (NCT00103285, NCT00075725, NCT00408005, NCT01190930, NCT02883049, NCT02112916, NCT02828358, and NCT00557193) were included in this secondary analysis. Race and ethnicity were categorised as non-Hispanic White, Hispanic, non-Hispanic Black, non-Hispanic Asian, and non-Hispanic other. Event-free survival and overall survival were compared across race and ethnicity groups. The relative contribution of clinical and biological disease prognosticators and insurance status was examined through multivariable regression models, both among the entire cohort and among those with B-cell lineage versus T-cell lineage disease.

FINDINGS: Between Jan 1, 2004, and Dec 31, 2019, 24 979 eligible children, adolescents, and young adults with acute lymphocytic leukaemia were enrolled, of which 21 152 had race or ethnicity data available. 11 849 (56·0%) were male and 9303 (44·0%) were female. Non-Hispanic White patients comprised the largest racial or ethnic group (13 872 [65·6%]), followed by Hispanic patients (4354 [20·6%]), non-Hispanic Black patients (1517 [7·2%]), non-Hispanic Asian (n=1071 [5·1%]), and non-Hispanic other (n=338 [1·6%]). 5-year event-free survival was 87·4% (95% CI 86·7-88·0%) among non-Hispanic White patients compared with 82·8% (81·4-84·1%; hazard ratio [HR] 1·37, 95% CI 1·26-1·49; p<0·0001) among Hispanic patients and 81·8% (79·3-84·0; HR 1·45, 1·28-1·65; p<0·0001) among non-Hispanic Black patients. Non-hispanic Asian patients had a 5-year event-free survival of 88·1% (95% CI 85·5-90·3%) and non-Hispanic other patients had a survival of 82·8% (76·4-87·6%). Inferior event-free survival among Hispanic patients was substantially attenuated by disease prognosticators and insurance status (HR decreased from 1·37 [1·26-1·49; p<0·0001] to 1·11 [1·00-1·22; p=0·045]). The increased risk among non-Hispanic Black patients was minimally attenuated (HR 1·45 [1·28-1·65; p<0·0001] to 1·32 [1·14-1·52; p<0·0001]). 5-year overall survival was 93·6% (91·5-95·1%) in non-Hispanic Asian patients, 93·3% (92·8-93·7%) in non-Hispanic White patients, 89·9% (88·7-90·9%) in Hispanic, 89·7% (87·6-91·4%) in non-Hispanic Black patients, 88·9% (83·2-92·7%) in non-Hispanic other patients. Disparities in overall survival were wider than event-free survival (eg, among non-Hispanic other patients, the HR for event-free survival was 1·43 [1·10-1·85] compared with 1·74 [1·27-2·40] for overall survival). Disparities were restricted to patients with B-cell acute lymphocytic leukaemia, no differences in event-free survival or overall survival were seen in the T-cell acute lymphocytic leukaemia group.

INTERPRETATION: Substantial disparities in outcome for B-cell acute lymphocytic leukaemia persist by race and ethnicity, but are not observed in T-cell acute lymphocytic leukaemia. Future studies of relapsed patients, access to and quality of care, and other potential aspects of structural racism are warranted to inform interventions aimed at dismantling racial and ethnic disparities.

FUNDING: National Cancer Institute and St Baldrick's Foundation.

DOI

10.1016/S2352-3026(22)00371-4

Alternate Title

Lancet Haematol

PMID

36725118

Title

Rates of laboratory adverse events by course in paediatric leukaemia ascertained with automated electronic health record extraction: a retrospective cohort study from the Children's Oncology Group.

Year of Publication

2022

Number of Pages

e678-e688

Date Published

07/2022

ISSN Number

2352-3026

Abstract

BACKGROUND: Adverse events are often misreported in clinical trials, leading to an incomplete understanding of toxicities. We aimed to test automated laboratory adverse event ascertainment and grading (via the ExtractEHR automated package) to assess its scalability and define adverse event rates for children with acute myeloid leukaemia and acute lymphoblastic leukaemia.

METHODS: For this retrospective cohort study from the Children's Oncology Group (COG), we included patients aged 0-22 years treated for acute myeloid leukaemia or acute lymphoblastic leukaemia at Children's Healthcare of Atlanta (Atlanta, GA, USA) from Jan 1, 2010, to Nov 1, 2018, at the Children's Hospital of Philadelphia (Philadelphia, PA, USA) from Jan 1, 2011, to Dec 31, 2014, and at the Texas Children's Hospital (Houston, TX, USA) from Jan 1, 2011, to Dec 31, 2014. The ExtractEHR automated package acquired, cleaned, and graded laboratory data as per Common Terminology Criteria for Adverse Events (CTCAE) version 5 for 22 commonly evaluated grade 3-4 adverse events (fatal events were not evaluated) with numerically based CTCAE definitions. Descriptive statistics tabulated adverse event frequencies. Adverse events ascertained by ExtractEHR were compared to manually reported adverse events for patients enrolled in two COG trials (AAML1031, NCT01371981; AALL0932, NCT02883049). Analyses were restricted to protocol-defined chemotherapy courses (induction I, induction II, intensification I, intensification II, and intensification III for acute myeloid leukaemia; induction, consolidation, interim maintenance, delayed intensification, and maintenance for acute lymphoblastic leukaemia).

FINDINGS: Laboratory adverse event data from 1077 patients (583 from Children's Healthcare of Atlanta, 200 from the Children's Hospital of Philadelphia, and 294 from the Texas Children's Hospital) who underwent 4611 courses (549 for acute myeloid leukaemia and 4062 for acute lymphoblastic leukaemia) were extracted, processed, and graded. Of the 166 patients with acute myeloid leukaemia, 86 (52%) were female, 80 (48%) were male, 96 (58%) were White, and 132 (80%) were non-Hispanic. Of the 911 patients with acute lymphoblastic leukaemia, 406 (45%) were female, 505 (55%) were male, 596 (65%) were White, and 641 (70%) were non-Hispanic. Patients with acute myeloid leukaemia had the most adverse events during induction I and intensification II. Hypokalaemia (one [17%] of six to 75 [48%] of 156 courses) and alanine aminotransferase (ALT) increased (13 [10%] of 134 to 27 [17%] of 156 courses) were the most prevalent non-haematological adverse events in patients with acute myeloid leukaemia, as identified by ExtractEHR. Patients with acute lymphoblastic leukaemia had the greatest number of adverse events during induction and maintenance (eight adverse events with prevalence ≥10%; induction and maintenance: anaemia, platelet count decreased, white blood cell count decreased, neutrophil count decreased, lymphocyte count decreased, ALT increased, and hypocalcaemia; induction: hypokalaemia; maintenance: aspartate aminotransferase [AST] increased and blood bilirubin increased), as identified by ExtractEHR. 187 (85%) of 220 total comparisons in 22 adverse events in four AAML1031 and six AALL0923 courses were substantially higher with ExtractEHR than COG-reported adverse event rates for adverse events with a prevalence of at least 2%.

INTERPRETATION: ExtractEHR is scalable and accurately defines laboratory adverse event rates for paediatric acute leukaemia; moreover, ExtractEHR seems to detect higher rates of laboratory adverse events than those reported in COG trials. These rates can be used for comparisons between therapies and to counsel patients treated on or off trials about the risks of chemotherapy. ExtractEHR-based adverse event ascertainment can improve reporting of laboratory adverse events in clinical trials.

FUNDING: US National Institutes of Health, St Baldrick's Foundation, and Alex's Lemonade Stand Foundation.

DOI

10.1016/S2352-3026(22)00168-5

Alternate Title

Lancet Haematol

PMID

35870472

Title

Rates of laboratory adverse events by course in paediatric leukaemia ascertained with automated electronic health record extraction: a retrospective cohort study from the Children's Oncology Group.

Year of Publication

2022

Number of Pages

e678-e688

Date Published

07/2022

ISSN Number

2352-3026

Abstract

BACKGROUND: Adverse events are often misreported in clinical trials, leading to an incomplete understanding of toxicities. We aimed to test automated laboratory adverse event ascertainment and grading (via the ExtractEHR automated package) to assess its scalability and define adverse event rates for children with acute myeloid leukaemia and acute lymphoblastic leukaemia.

METHODS: For this retrospective cohort study from the Children's Oncology Group (COG), we included patients aged 0-22 years treated for acute myeloid leukaemia or acute lymphoblastic leukaemia at Children's Healthcare of Atlanta (Atlanta, GA, USA) from Jan 1, 2010, to Nov 1, 2018, at the Children's Hospital of Philadelphia (Philadelphia, PA, USA) from Jan 1, 2011, to Dec 31, 2014, and at the Texas Children's Hospital (Houston, TX, USA) from Jan 1, 2011, to Dec 31, 2014. The ExtractEHR automated package acquired, cleaned, and graded laboratory data as per Common Terminology Criteria for Adverse Events (CTCAE) version 5 for 22 commonly evaluated grade 3-4 adverse events (fatal events were not evaluated) with numerically based CTCAE definitions. Descriptive statistics tabulated adverse event frequencies. Adverse events ascertained by ExtractEHR were compared to manually reported adverse events for patients enrolled in two COG trials (AAML1031, NCT01371981; AALL0932, NCT02883049). Analyses were restricted to protocol-defined chemotherapy courses (induction I, induction II, intensification I, intensification II, and intensification III for acute myeloid leukaemia; induction, consolidation, interim maintenance, delayed intensification, and maintenance for acute lymphoblastic leukaemia).

FINDINGS: Laboratory adverse event data from 1077 patients (583 from Children's Healthcare of Atlanta, 200 from the Children's Hospital of Philadelphia, and 294 from the Texas Children's Hospital) who underwent 4611 courses (549 for acute myeloid leukaemia and 4062 for acute lymphoblastic leukaemia) were extracted, processed, and graded. Of the 166 patients with acute myeloid leukaemia, 86 (52%) were female, 80 (48%) were male, 96 (58%) were White, and 132 (80%) were non-Hispanic. Of the 911 patients with acute lymphoblastic leukaemia, 406 (45%) were female, 505 (55%) were male, 596 (65%) were White, and 641 (70%) were non-Hispanic. Patients with acute myeloid leukaemia had the most adverse events during induction I and intensification II. Hypokalaemia (one [17%] of six to 75 [48%] of 156 courses) and alanine aminotransferase (ALT) increased (13 [10%] of 134 to 27 [17%] of 156 courses) were the most prevalent non-haematological adverse events in patients with acute myeloid leukaemia, as identified by ExtractEHR. Patients with acute lymphoblastic leukaemia had the greatest number of adverse events during induction and maintenance (eight adverse events with prevalence ≥10%; induction and maintenance: anaemia, platelet count decreased, white blood cell count decreased, neutrophil count decreased, lymphocyte count decreased, ALT increased, and hypocalcaemia; induction: hypokalaemia; maintenance: aspartate aminotransferase [AST] increased and blood bilirubin increased), as identified by ExtractEHR. 187 (85%) of 220 total comparisons in 22 adverse events in four AAML1031 and six AALL0923 courses were substantially higher with ExtractEHR than COG-reported adverse event rates for adverse events with a prevalence of at least 2%.

INTERPRETATION: ExtractEHR is scalable and accurately defines laboratory adverse event rates for paediatric acute leukaemia; moreover, ExtractEHR seems to detect higher rates of laboratory adverse events than those reported in COG trials. These rates can be used for comparisons between therapies and to counsel patients treated on or off trials about the risks of chemotherapy. ExtractEHR-based adverse event ascertainment can improve reporting of laboratory adverse events in clinical trials.

FUNDING: US National Institutes of Health, St Baldrick's Foundation, and Alex's Lemonade Stand Foundation.

DOI

10.1016/S2352-3026(22)00168-5

Alternate Title

Lancet Haematol

PMID

35870472

Title

A report from the Leukemia Electronic Abstraction of Records Network on risk of hepatotoxicity during pediatric acute lymphoblastic leukemia treatment.

Year of Publication

2022

Date Published

2022 Jan 27

ISSN Number

1592-8721

Abstract

<p>Not available.</p>

DOI

10.3324/haematol.2021.279805

Alternate Title

Haematologica

PMID

35081687

Title

Association of Combined Focal 22q11.22 Deletion and IKZF1 Alterations With Outcomes in Childhood Acute Lymphoblastic Leukemia.

Year of Publication

2021

Date Published

2021 Aug 19

ISSN Number

2374-2445

Abstract

<p><strong>Importance: </strong>Alterations in the IKZF1 gene drive B-cell acute lymphoblastic leukemia (B-ALL) but are not routinely used to stratify patients by risk because of inconsistent associations with outcomes. We describe a novel deletion in 22q11.22 that was consistently associated with very poor outcomes in patients with B-ALL with IKZF1 alterations.</p>

<p><strong>Objective: </strong>To determine whether focal deletions within the λ variable chain region in chromosome 22q11.22 were associated with patients with B-ALL with IKZF1 alterations with the highest risk of relapse and/or death.</p>

<p><strong>Design, Setting, and Participants: </strong>This cohort study included 1310 primarily high-risk pediatric patients with B-ALL who were taken from 6 independent clinical cohorts, consisting of 3 multicenter cohorts (AALL0232 [2004-2011], P9906 [2000-2003], and patients with Down syndrome who were pooled from national and international studies) and 3 single-institution cohorts (University of Utah [Salt Lake City], Children's Hospital of Philadelphia [Philadelphia, Pennsylvania], and St. Jude Children's Hospital [Memphis, Tennessee]). Data analysis began in 2011 using patients from the older studies first, and data analysis concluded in 2021.</p>

<p><strong>Exposures: </strong>Focal 22q11.22 deletions.</p>

<p><strong>Main Outcomes and Measures: </strong>Event-free and overall survival was investigated. The hypothesis that 22q11.22 deletions stratified the prognostic effect of IKZF1 alterations was formulated while investigating nearby deletions in VRPEB1 in 2 initial cohorts (n = 270). Four additional cohorts were then obtained to further study this association (n = 1040).</p>

<p><strong>Results: </strong>This study of 1310 patients with B-ALL (717 male [56.1%] and 562 female patients [43.9%]) found that focal 22q11.22 deletions are frequent (518 of 1310 [39.5%]) in B-ALL and inconsistent with physiologic V(D)J recombination. A total of 299 of 1310 patients with B-ALL had IKZF1 alterations. Among patients with IKZF1 alterations, more than half shared concomitant focal 22q11.22 deletions (159 of 299 [53.0%]). Patients with combined IKZF1 alterations and 22q11.22 deletions had worse outcomes compared with patients with IKZF1 alterations and wild-type 22q11.22 alleles in every cohort examined (combined cohorts: 5-year event-free survival rates, 43.3% vs 68.5%; hazard ratio [HR], 2.18; 95% CI, 1.54-3.07; P &lt; .001; 5-year overall survival rates, 66.9% vs 83.9%; HR, 2.05; 95% CI, 1.32-3.21; P = .001). While 22q11.22 deletions were not prognostic in patients with wild-type IKZF1 , concomitant 22q11.22 deletions in patients with IKZF1 alterations stratified outcomes across additional risk groups, including patients who met the IKZF1plus criteria, and maintained independent significance in multivariate analysis for event-free survival (HR, 2.05; 95% CI, 1.27-3.29; P = .003) and overall survival (HR, 1.83; 95% CI, 1.01-3.34; P = .05).</p>

<p><strong>Conclusions and Relevance: </strong>This cohort study suggests that 22q11.22 deletions identify patients with B-ALL and IKZF1 alterations who have very poor outcomes and may offer a new genetic biomarker to further refine B-ALL risk stratification and treatment strategies.</p>

DOI

10.1001/jamaoncol.2021.2723

Alternate Title

JAMA Oncol

PMID

34410295

Title

Identifying relapses and stem cell transplants in pediatric acute lymphoblastic leukemia using administrative data: Capturing national outcomes irrespective of trial enrollment.

Year of Publication

2020

Number of Pages

e28315

Date Published

2020 May 11

ISSN Number

1545-5017

Abstract

<p><strong>INTRODUCTION: </strong>Our objectives were to design and validate methods to identify relapse and hematopoietic stem cell transplantation (HSCT) in children with acute lymphoblastic leukemia (ALL) using administrative data representing hospitalizations at US pediatric institutions.</p>

<p><strong>METHODS: </strong>We developed daily billing and ICD-9 code definitions to identify relapses and HSCTs within a cohort of children with newly diagnosed ALL between January 1, 2004, and December 31, 2013, previously assembled from the Pediatric Health Information System (PHIS) database. Chart review for children with ALL at the Children's Hospital of Philadelphia (CHOP) and Texas Children's Hospital (TCH) was performed to establish relapse and HSCT gold standards for sensitivity and positive predictive value (PPV) calculations. We estimated incidences of relapse and HSCT in the PHIS ALL cohort.</p>

<p><strong>RESULTS: </strong>We identified 362 CHOP and 314 TCH ALL patients in PHIS and established true positives by chart review. Sensitivity and PPV for identifying both relapse and HSCT in PHIS were&nbsp;&gt;&nbsp;90% at both hospitals. Five-year relapse incidence in the 10&nbsp;150-patient PHIS cohort was 10.3% (95% CI 9.8%-10.9%) with 7.1% (6.6%-7.6%) of children underwent HSCTs. Patients in higher-risk demographic groups had higher relapse and HSCT rates. Our analysis also identified differences in incidences of relapse and HSCT by race, ethnicity, and insurance status.</p>

<p><strong>CONCLUSIONS: </strong>Administrative data can be used to identify relapse and HSCT accurately in children with ALL whether they occur on- or off-therapy, in contrast with published approaches. This method has wide potential applicability for estimating these incidences in pediatric ALL, including patients not enrolled on clinical trials.</p>

DOI

10.1002/pbc.28315

Alternate Title

Pediatr Blood Cancer

PMID

32391940

Title

An overview of disparities in childhood cancer: Report on the Inaugural Symposium on Childhood Cancer Health Disparities, Houston, Texas, 2016.

Year of Publication

2018

Number of Pages

1-16

Date Published

2018 May 08

ISSN Number

1521-0669

Abstract

<p>The Inaugural Symposium on Childhood Cancer Health Disparities was held in Houston, Texas, on November 2, 2016. The symposium was attended by 109 scientists and clinicians from diverse disciplinary backgrounds with interests in pediatric cancer disparities and focused on reviewing our current knowledge of disparities in cancer risk and outcomes for select childhood cancers. Following a full day of topical sessions, everyone participated in a brainstorming session to develop a working strategy for the continued expansion of research in this area. This meeting was designed to serve as a springboard for examination of childhood cancer disparities from a more unified and systematic approach and to enhance awareness of this area of need.</p>

DOI

10.1080/08880018.2018.1464088

Alternate Title

Pediatr Hematol Oncol

PMID

29737912

WATCH THIS PAGE

Subscription is not available for this page.