First name
Chesney
Middle name
D
Last name
Castleberry

Title

No Obesity Paradox in Pediatric Patients With Dilated Cardiomyopathy.

Year of Publication

2018

Number of Pages

222-230

Date Published

2018 Mar

ISSN Number

2213-1787

Abstract

<p><strong>OBJECTIVES: </strong>This study aimed to examine the role of nutrition in pediatric dilated cardiomyopathy (DCM).</p>

<p><strong>BACKGROUND: </strong>In adults with DCM, malnutrition is associated with mortality, whereas obesity is associated with survival.</p>

<p><strong>METHODS: </strong>The National Heart, Lung, and Blood Institute-funded Pediatric Cardiomyopathy Registry was used to identify patients with DCM and categorized by anthropometric measurements: malnourished (MN) (body mass index [BMI]&nbsp;&lt;5% for&nbsp;≥2 years or weight-for-length&nbsp;&lt;5% for&nbsp;&lt;2 years), obesity (BMI &gt;95% for age&nbsp;≥2 years or weight-for-length &gt;95% for&nbsp;&lt;2 years), or normal bodyweight (NB). Of 904 patients with DCM, 23.7% (214) were MN, 13.3% (120) were obese, and 63.1% (570) were NB.</p>

<p><strong>RESULTS: </strong>Obese patients were older (9.0 vs. 5.7 years for NB; p&nbsp;&lt; 0.001) and more likely to have a family history of DCM (36.1% vs. 23.5% for NB; p&nbsp;= 0.023). MN patients were younger (2.7 years vs. 5.7 years for NB; p&nbsp;&lt; 0.001) and more likely to have heart failure (79.9% vs. 69.7% for NB; p&nbsp;= 0.012), cardiac dimension z-scores &gt;2, and higher ventricular mass compared with NB. In multivariable analysis, MN was associated with increased risk of death (hazard&nbsp;ratio [HR]: 2.06; 95% confidence interval [CI]: 1.66 to 3.65; p&nbsp;&lt; 0.001); whereas obesity was not (HR: 1.49; 95% CI: 0.72 to 3.08). Competing outcomes analysis demonstrated increased risk of mortality for MN compared with NB (p&nbsp;=&nbsp;0.03), but no difference in transplant rate (p&nbsp;= 0.159).</p>

<p><strong>CONCLUSIONS: </strong>Malnutrition is associated with increased mortality and other unfavorable echocardiographic and clinical&nbsp;outcomes compared with those of NB. The same effect of obesity on survival was not observed. Further studies are needed investigating the long-term impact of abnormal anthropometric measurements on outcomes in pediatric DCM. (Pediatric&nbsp;Cardiomyopathy Registry; NCT00005391).</p>

DOI

10.1016/j.jchf.2017.11.015

Alternate Title

JACC Heart Fail

PMID

29428438

Title

Pediatric Cardiomyopathies.

Year of Publication

2017

Number of Pages

855-873

Date Published

2017 Sep 15

ISSN Number

1524-4571

Abstract

<p>Pediatric cardiomyopathies are rare diseases with an annual incidence of 1.1 to 1.5 per 100 000. Dilated and hypertrophic cardiomyopathies are the most common; restrictive, noncompaction, and mixed cardiomyopathies occur infrequently; and arrhythmogenic right ventricular cardiomyopathy is rare. Pediatric cardiomyopathies can result from coronary artery abnormalities, tachyarrhythmias, exposure to infection or toxins, or secondary to other underlying disorders. Increasingly, the importance of genetic mutations in the pathogenesis of isolated or syndromic pediatric cardiomyopathies is becoming apparent. Pediatric cardiomyopathies often occur in the absence of comorbidities, such as atherosclerosis, hypertension, renal dysfunction, and diabetes mellitus; as a result, they offer insights into the primary pathogenesis of myocardial dysfunction. Large international registries have characterized the epidemiology, cause, and outcomes of pediatric cardiomyopathies. Although adult and pediatric cardiomyopathies have similar morphological and clinical manifestations, their outcomes differ significantly. Within 2 years of presentation, normalization of function occurs in 20% of children with dilated cardiomyopathy, and 40% die or undergo transplantation. Infants with hypertrophic cardiomyopathy have a 2-year mortality of 30%, whereas death is rare in older children. Sudden death is rare. Molecular evidence indicates that gene expression differs between adult and pediatric cardiomyopathies, suggesting that treatment response may differ as well. Clinical trials to support evidence-based treatments and the development of disease-specific therapies for pediatric cardiomyopathies are in their infancy. This compendium summarizes current knowledge of the genetic and molecular origins, clinical course, and outcomes of the most common phenotypic presentations of pediatric cardiomyopathies and highlights key areas where additional research is required.</p>

<p><strong>CLINICAL TRIAL REGISTRATION: </strong>URL: http://www.clinicaltrials.gov. Unique identifiers: NCT02549664 and NCT01912534.</p>

DOI

10.1161/CIRCRESAHA.116.309386

Alternate Title

Circ. Res.

PMID

28912187

WATCH THIS PAGE

Subscription is not available for this page.