First name
Jason
Middle name
G
Last name
Newland

Title

Association of Diagnostic Stewardship for Blood Cultures in Critically Ill Children With Culture Rates, Antibiotic Use, and Patient Outcomes: Results of the Bright STAR Collaborative.

Year of Publication

2022

Number of Pages

690-698

Date Published

05/2022

ISSN Number

2168-6211

Abstract

Importance: Blood culture overuse in the pediatric intensive care unit (PICU) can lead to unnecessary antibiotic use and contribute to antibiotic resistance. Optimizing blood culture practices through diagnostic stewardship may reduce unnecessary blood cultures and antibiotics.

Objective: To evaluate the association of a 14-site multidisciplinary PICU blood culture collaborative with culture rates, antibiotic use, and patient outcomes.

Design, Setting, and Participants: This prospective quality improvement (QI) collaborative involved 14 PICUs across the United States from 2017 to 2020 for the Bright STAR (Testing Stewardship for Antibiotic Reduction) collaborative. Data were collected from each participating PICU and from the Children's Hospital Association Pediatric Health Information System for prespecified primary and secondary outcomes.

Exposures: A local QI program focusing on blood culture practices in the PICU (facilitated by a larger QI collaborative).

Main Outcomes and Measures: The primary outcome was blood culture rates (per 1000 patient-days/mo). Secondary outcomes included broad-spectrum antibiotic use (total days of therapy and new initiations of broad-spectrum antibiotics ≥3 days after PICU admission) and PICU rates of central line-associated bloodstream infection (CLABSI), Clostridioides difficile infection, mortality, readmission, length of stay, sepsis, and severe sepsis/septic shock.

Results: Across the 14 PICUs, the blood culture rate was 149.4 per 1000 patient-days/mo preimplementation and 100.5 per 1000 patient-days/mo postimplementation, for a 33% relative reduction (95% CI, 26%-39%). Comparing the periods before and after implementation, the rate of broad-spectrum antibiotic use decreased from 506 days to 440 days per 1000 patient-days/mo, respectively, a 13% relative reduction (95% CI, 7%-19%). The broad-spectrum antibiotic initiation rate decreased from 58.1 to 53.6 initiations/1000 patient-days/mo, an 8% relative reduction (95% CI, 4%-11%). Rates of CLABSI decreased from 1.8 to 1.1 per 1000 central venous line days/mo, a 36% relative reduction (95% CI, 20%-49%). Mortality, length of stay, readmission, sepsis, and severe sepsis/septic shock were similar before and after implementation.

Conclusions and Relevance: Multidisciplinary diagnostic stewardship interventions can reduce blood culture and antibiotic use in the PICU. Future work will determine optimal strategies for wider-scale dissemination of diagnostic stewardship in this setting while monitoring patient safety and balancing measures.

DOI

10.1001/jamapediatrics.2022.1024

Alternate Title

JAMA Pediatr

PMID

35499841

Title

Association of Diagnostic Stewardship for Blood Cultures in Critically Ill Children With Culture Rates, Antibiotic Use, and Patient Outcomes: Results of the Bright STAR Collaborative.

Year of Publication

2022

Number of Pages

690-698

Date Published

12/2022

ISSN Number

2168-6211

Abstract

Importance: Blood culture overuse in the pediatric intensive care unit (PICU) can lead to unnecessary antibiotic use and contribute to antibiotic resistance. Optimizing blood culture practices through diagnostic stewardship may reduce unnecessary blood cultures and antibiotics.

Objective: To evaluate the association of a 14-site multidisciplinary PICU blood culture collaborative with culture rates, antibiotic use, and patient outcomes.

Design, Setting, and Participants: This prospective quality improvement (QI) collaborative involved 14 PICUs across the United States from 2017 to 2020 for the Bright STAR (Testing Stewardship for Antibiotic Reduction) collaborative. Data were collected from each participating PICU and from the Children's Hospital Association Pediatric Health Information System for prespecified primary and secondary outcomes.

Exposures: A local QI program focusing on blood culture practices in the PICU (facilitated by a larger QI collaborative).

Main Outcomes and Measures: The primary outcome was blood culture rates (per 1000 patient-days/mo). Secondary outcomes included broad-spectrum antibiotic use (total days of therapy and new initiations of broad-spectrum antibiotics ≥3 days after PICU admission) and PICU rates of central line-associated bloodstream infection (CLABSI), Clostridioides difficile infection, mortality, readmission, length of stay, sepsis, and severe sepsis/septic shock.

Results: Across the 14 PICUs, the blood culture rate was 149.4 per 1000 patient-days/mo preimplementation and 100.5 per 1000 patient-days/mo postimplementation, for a 33% relative reduction (95% CI, 26%-39%). Comparing the periods before and after implementation, the rate of broad-spectrum antibiotic use decreased from 506 days to 440 days per 1000 patient-days/mo, respectively, a 13% relative reduction (95% CI, 7%-19%). The broad-spectrum antibiotic initiation rate decreased from 58.1 to 53.6 initiations/1000 patient-days/mo, an 8% relative reduction (95% CI, 4%-11%). Rates of CLABSI decreased from 1.8 to 1.1 per 1000 central venous line days/mo, a 36% relative reduction (95% CI, 20%-49%). Mortality, length of stay, readmission, sepsis, and severe sepsis/septic shock were similar before and after implementation.

Conclusions and Relevance: Multidisciplinary diagnostic stewardship interventions can reduce blood culture and antibiotic use in the PICU. Future work will determine optimal strategies for wider-scale dissemination of diagnostic stewardship in this setting while monitoring patient safety and balancing measures.

DOI

10.1001/jamapediatrics.2022.1024

Alternate Title

JAMA Pediatr

PMID

35499841

Title

Comparison of the Respiratory Resistomes and Microbiota in Children Receiving Short versus Standard Course Treatment for Community-Acquired Pneumonia.

Year of Publication

2022

Number of Pages

e0019522

Date Published

2022 Mar 24

ISSN Number

2150-7511

Abstract

<p>Pediatric community-acquired pneumonia (CAP) is often treated with 10 days of antibiotics. Shorter treatment strategies may be effective and lead to less resistance. The impact of duration of treatment on the respiratory microbiome is unknown. Data are from children ( = 171), ages 6 to 71 months, enrolled in the SCOUT-CAP trial (NCT02891915). Children with CAP were randomized to a short (5 days) versus standard (10 days) beta-lactam treatment strategy. Throat swabs were collected at enrollment and the end of the study and used for shotgun metagenomic sequencing. The number of beta-lactam and multidrug efflux resistance genes per prokaryotic cell (RGPC) was significantly lower in children receiving the short compared to standard treatment strategy at the end of the study (Wilcoxon rank sum test,  &lt; 0.05 for each). Wilcoxon effect sizes were small for beta-lactam (: 0.15; 95% confidence interval [CI], 0.01 to 0.29) and medium for multidrug efflux RGPC (: 0.23; 95% CI, 0.09 to 0.37). Analyses comparing the resistome at the beginning and end of the trial indicated that in contrast to the standard strategy group, the resistome significantly differed in children receiving the short course strategy. Relative abundances of commensals such as Neisseria subflava were higher in children receiving the standard strategy, and species and Veillonella parvula were higher in children receiving the short course strategy. We conclude that children receiving 5 days of beta-lactam therapy for CAP had a significantly lower abundance of antibiotic resistance determinants than those receiving standard 10-day treatment. These data provide an additional rationale for reductions in antibiotic use when feasible. Antibiotic resistance is a major threat to public health. Treatment strategies involving shorter antibiotic courses have been proposed as a strategy to lower the potential for antibiotic resistance. We examined relationships between the duration of antibiotic treatment and its impact on resistance genes and bacteria in the respiratory microbiome using data from a randomized controlled trial of beta-lactam therapy for pediatric pneumonia. The randomized design provides reliable evidence of the effectiveness of interventions and minimizes the potential for confounding. Children receiving 5 days of therapy for pneumonia had a lower prevalence of two different types of resistance genes than did those receiving the 10-day treatment. Our data also suggest that children receiving longer durations of therapy have a greater abundance of antibiotic resistance genes for a longer period of time than do children receiving shorter durations of therapy. These data provide an additional rationale for reductions in antibiotic use.</p>

DOI

10.1128/mbio.00195-22

Alternate Title

mBio

PMID

35323040

Title

Gastrointestinal Microbiome Disruption and Antibiotic-Associated Diarrhea in Children Receiving Antibiotic Therapy for Community-Acquired Pneumonia.

Year of Publication

2022

Date Published

2022 Mar 06

ISSN Number

1537-6613

Abstract

<p>Antibiotic-associated diarrhea (AAD) is a common side effect of antibiotics. We examined the gastrointestinal microbiota in children treated with beta-lactams for community-acquired pneumonia. Data were from 66 children (n=198 samples), ages 6-71 months, enrolled in the SCOUT-CAP trial (NCT02891915). AAD was defined as ≥1 day of diarrhea. Stool samples were collected on study days 1, 6-10, and 19-25. Samples were analyzed using 16s-rRNA gene sequencing to identify associations between patient characteristics, microbiota characteristics, and AAD (yes/no). Nineteen (29%) children developed AAD. Microbiota compositional profiles differed between AAD groups (PERMANOVA, P &lt; 0.03) and across visits (P &lt; 0.001). Children with higher baseline relative abundances of two Bacteroides species were less likely to experience AAD. Higher baseline abundance of Lachnospiraceae and amino acid biosynthesis pathways were associated with AAD. Children in the AAD group experienced prolonged dysbiosis (P &lt; 0.05). Specific gastrointestinal microbiota profiles are associated with AAD in children.</p>

DOI

10.1093/infdis/jiac082

Alternate Title

J Infect Dis

PMID

35249113

Title

Short- vs Standard-Course Outpatient Antibiotic Therapy for Community-Acquired Pneumonia in Children: The SCOUT-CAP Randomized Clinical Trial.

Year of Publication

2022

Date Published

2022 Jan 18

ISSN Number

2168-6211

Abstract

<p><strong>Importance: </strong>Childhood community-acquired pneumonia (CAP) is usually treated with 10 days of antibiotics. Shorter courses may be effective with fewer adverse effects and decreased potential for antibiotic resistance.</p>

<p><strong>Objective: </strong>To compare a short (5-day) vs standard (10-day) antibiotic treatment strategy for CAP in young children.</p>

<p><strong>Design, Setting, and Participants: </strong>Randomized double-blind placebo-controlled clinical trial in outpatient clinic, urgent care, or emergency settings in 8 US cities. A total of 380 healthy children aged 6 to 71 months with nonsevere CAP demonstrating early clinical improvement were enrolled from December 2, 2016, to December 16, 2019. Data were analyzed from January to September 2020.</p>

<p><strong>Intervention: </strong>On day 6 of their originally prescribed therapy, participants were randomized 1:1 to receive 5 days of matching placebo or 5 additional days of the same antibiotic.</p>

<p><strong>Main Outcomes and Measures: </strong>The primary end point was the end-of-treatment response adjusted for duration of antibiotic risk (RADAR), a composite end point that ranks each child's clinical response, resolution of symptoms, and antibiotic-associated adverse effects in an ordinal desirability of outcome ranking (DOOR). Within each DOOR rank, participants were further ranked by the number of antibiotic days, assuming that shorter antibiotic durations were more desirable. Using RADAR, the probability of a more desirable outcome was estimated for the short- vs standard-course strategy. In a subset of children, throat swabs were collected between study days 19 and 25 to quantify antibiotic resistance genes in oropharyngeal flora.</p>

<p><strong>Results: </strong>A total of 380 children (189 randomized to short course and 191 randomized to standard course) made up the study population. The mean (SD) age was 35.7 (17.2) months, and 194 participants (51%) were male. Of the included children, 8 were Asian, 99 were Black or African American, 234 were White, 32 were multiracial, and 7 were of unknown or unreported race; 33 were Hispanic or Latino, 344 were not Hispanic or Latino, and 3 were of unknown or unreported ethnicity. There were no differences between strategies in the DOOR or its individual components. Fewer than 10% of children in either strategy had an inadequate clinical response. The short-course strategy had a 69% (95% CI, 63-75) probability of a more desirable RADAR outcome compared with the standard-course strategy. A total of 171 children were included in the resistome analysis. The median (range) number of antibiotic resistance genes per prokaryotic cell (RGPC) was significantly lower in the short-course strategy compared with the standard-course strategy for total RGPC (1.17 [0.35-2.43] vs 1.33 [0.46-11.08]; P = .01) and β-lactamase RGPC (0.55 [0.18-1.24] vs 0.60 [0.21-2.45]; P = .03).</p>

<p><strong>Conclusions and Relevance: </strong>In this study, among children responding to initial treatment for outpatient CAP, a 5-day antibiotic strategy was superior to a 10-day strategy. The shortened approach resulted in similar clinical response and antibiotic-associated adverse effects, while reducing antibiotic exposure and resistance.</p>

<p><strong>Trial Registration: </strong>ClinicalTrials.gov Identifier: NCT02891915.</p>

DOI

10.1001/jamapediatrics.2021.5547

Alternate Title

JAMA Pediatr

PMID

35040920

Title

A National Survey of Outpatient Parenteral Antibiotic Therapy Practices.

Year of Publication

2021

Date Published

2021 Dec 23

ISSN Number

2048-7207

Abstract

<p>We conducted a national survey of pediatric infectious diseases (ID) clinicians on outpatient parenteral antibiotic therapy (OPAT) practices and post-discharge ID follow-up. Only 15% of sites required ID consultation for all OPAT. ID division resources for post-discharge care varied. Opportunities exist to increase ID involvement in post-discharge management of serious infections.</p>

DOI

10.1093/jpids/piab127

Alternate Title

J Pediatric Infect Dis Soc

PMID

34939654

Title

Pediatric antimicrobial stewardship practices at discharge: A national survey.

Year of Publication

2021

Number of Pages

1-3

Date Published

2021 Jul 16

ISSN Number

1559-6834

Abstract

<p>We surveyed pediatric antimicrobial stewardship program (ASP) site leaders within the Sharing Antimicrobial Reports for Pediatric Stewardship collaborative regarding discharge stewardship practices. Among 67 sites, 13 (19%) reported ASP review of discharge antimicrobial prescriptions. These findings highlight discharge stewardship as a potential opportunity for improvement during the hospital-to-home transition.</p>

DOI

10.1017/ice.2021.283

Alternate Title

Infect Control Hosp Epidemiol

PMID

34269167

Title

Inappropriate antibiotic surgical prophylaxis in pediatric patients: A national point-prevalence study.

Year of Publication

2020

Number of Pages

477-479

Date Published

2020 04

ISSN Number

1559-6834

DOI

10.1017/ice.2020.28

Alternate Title

Infect Control Hosp Epidemiol

PMID

32127068

Title

Comparative effectiveness of ceftolozane/tazobactam against pediatric gram-negative drug-resistant isolates.

Year of Publication

2021

Number of Pages

1-6

Date Published

2021 Mar 01

ISSN Number

1973-9478

Abstract

<p>Ceftolozane/tazobactam (C/T), a cephalosporin/beta-lactamase inhibitor combination, was evaluated vs. 10 comparators against 299 pediatric extended-spectrum-cephalosporin-resistant or carbapenem-resistant (ESC-R/CR) Gram-negative Enterobacteriaceae from three freestanding pediatric centers. Isolates were from urine or other sterile sites of children and adolescents through 21 years of age. Susceptibilities were assayed by microbroth dilution via custom Sensititre plates (Thermo Fisher Scientific). Susceptibility was determined using the Sensititre Vizion® system (Thermo Fisher Scientific). Susceptibility breakpoint criteria were those of the Clinical and Laboratory Standards Institute (CLSI) for 2017, except for colistin (EUCAST 2019). Overall, 87.5% isolates were C/T susceptible (MIC ≤2 μg/ml; MIC 0.25/4 μg/ml). Susceptibility to C/T was detected more frequently as compared to all other antimicrobials tested except for colistin (95.4%) and meropenem (97.4%). Percent susceptibility to C/T was high for (91%) and . (73.3%). C/T demonstrated good activity and high potency against most beta-lactam resistant pediatric Enterobacteriaceae from three geographically diverse U.S. regions.</p>

DOI

10.1080/1120009X.2021.1888030

Alternate Title

J Chemother

PMID

33645447

Title

Multicenter interim guidance on use of antivirals for children with COVID-19/SARS-CoV-2.

Year of Publication

2020

Date Published

2020 Sep 12

ISSN Number

2048-7207

Abstract

<p><strong>BACKGROUND: </strong>Although Coronavirus Disease 2019 (COVID-19) is a mild infection in most children, a small proportion develop severe or critical illness. Data evaluating agents with potential antiviral activity continue to expand, such that updated guidance is needed regarding use of these agents in children.</p>

<p><strong>METHODS: </strong>A panel of pediatric infectious diseases physicians and pharmacists from 20 geographically diverse North American institutions was convened. Through a series of teleconferences and web-based surveys, a set of guidance statements was developed and refined based on review of the best available evidence and expert opinion.</p>

<p><strong>RESULTS: </strong>Given the typically mild course of COVID-19 in children, supportive care alone is suggested for most cases. For children with severe illness, defined as a supplemental oxygen requirement without need for non-invasive or invasive mechanical ventilation or extra-corporeal membrane oxygenation (ECMO), remdesivir is suggested, preferably as part of a clinical trial if available. Remdesivir should also be considered for critically ill children requiring invasive or non-invasive mechanical ventilation or ECMO. A duration of 5 days is appropriate for most patients. The panel recommends against the use of hydroxychloroquine or lopinavir-ritonavir (or other protease inhibitors) for COVID-19 in children.</p>

<p><strong>CONCLUSIONS: </strong>Antiviral therapy for COVID-19 is not necessary for the great majority of pediatric patients. For children with severe or critical disease, this guidance offers an approach for decision-making regarding use of remdesivir.</p>

DOI

10.1093/jpids/piaa115

Alternate Title

J Pediatric Infect Dis Soc

PMID

32918548

WATCH THIS PAGE

Subscription is not available for this page.