First name
Evanette
Last name
Burrows

Title

Rates of laboratory adverse events by course in paediatric leukaemia ascertained with automated electronic health record extraction: a retrospective cohort study from the Children's Oncology Group.

Year of Publication

2022

Number of Pages

e678-e688

Date Published

07/2022

ISSN Number

2352-3026

Abstract

BACKGROUND: Adverse events are often misreported in clinical trials, leading to an incomplete understanding of toxicities. We aimed to test automated laboratory adverse event ascertainment and grading (via the ExtractEHR automated package) to assess its scalability and define adverse event rates for children with acute myeloid leukaemia and acute lymphoblastic leukaemia.

METHODS: For this retrospective cohort study from the Children's Oncology Group (COG), we included patients aged 0-22 years treated for acute myeloid leukaemia or acute lymphoblastic leukaemia at Children's Healthcare of Atlanta (Atlanta, GA, USA) from Jan 1, 2010, to Nov 1, 2018, at the Children's Hospital of Philadelphia (Philadelphia, PA, USA) from Jan 1, 2011, to Dec 31, 2014, and at the Texas Children's Hospital (Houston, TX, USA) from Jan 1, 2011, to Dec 31, 2014. The ExtractEHR automated package acquired, cleaned, and graded laboratory data as per Common Terminology Criteria for Adverse Events (CTCAE) version 5 for 22 commonly evaluated grade 3-4 adverse events (fatal events were not evaluated) with numerically based CTCAE definitions. Descriptive statistics tabulated adverse event frequencies. Adverse events ascertained by ExtractEHR were compared to manually reported adverse events for patients enrolled in two COG trials (AAML1031, NCT01371981; AALL0932, NCT02883049). Analyses were restricted to protocol-defined chemotherapy courses (induction I, induction II, intensification I, intensification II, and intensification III for acute myeloid leukaemia; induction, consolidation, interim maintenance, delayed intensification, and maintenance for acute lymphoblastic leukaemia).

FINDINGS: Laboratory adverse event data from 1077 patients (583 from Children's Healthcare of Atlanta, 200 from the Children's Hospital of Philadelphia, and 294 from the Texas Children's Hospital) who underwent 4611 courses (549 for acute myeloid leukaemia and 4062 for acute lymphoblastic leukaemia) were extracted, processed, and graded. Of the 166 patients with acute myeloid leukaemia, 86 (52%) were female, 80 (48%) were male, 96 (58%) were White, and 132 (80%) were non-Hispanic. Of the 911 patients with acute lymphoblastic leukaemia, 406 (45%) were female, 505 (55%) were male, 596 (65%) were White, and 641 (70%) were non-Hispanic. Patients with acute myeloid leukaemia had the most adverse events during induction I and intensification II. Hypokalaemia (one [17%] of six to 75 [48%] of 156 courses) and alanine aminotransferase (ALT) increased (13 [10%] of 134 to 27 [17%] of 156 courses) were the most prevalent non-haematological adverse events in patients with acute myeloid leukaemia, as identified by ExtractEHR. Patients with acute lymphoblastic leukaemia had the greatest number of adverse events during induction and maintenance (eight adverse events with prevalence ≥10%; induction and maintenance: anaemia, platelet count decreased, white blood cell count decreased, neutrophil count decreased, lymphocyte count decreased, ALT increased, and hypocalcaemia; induction: hypokalaemia; maintenance: aspartate aminotransferase [AST] increased and blood bilirubin increased), as identified by ExtractEHR. 187 (85%) of 220 total comparisons in 22 adverse events in four AAML1031 and six AALL0923 courses were substantially higher with ExtractEHR than COG-reported adverse event rates for adverse events with a prevalence of at least 2%.

INTERPRETATION: ExtractEHR is scalable and accurately defines laboratory adverse event rates for paediatric acute leukaemia; moreover, ExtractEHR seems to detect higher rates of laboratory adverse events than those reported in COG trials. These rates can be used for comparisons between therapies and to counsel patients treated on or off trials about the risks of chemotherapy. ExtractEHR-based adverse event ascertainment can improve reporting of laboratory adverse events in clinical trials.

FUNDING: US National Institutes of Health, St Baldrick's Foundation, and Alex's Lemonade Stand Foundation.

DOI

10.1016/S2352-3026(22)00168-5

Alternate Title

Lancet Haematol

PMID

35870472

Title

Rates of laboratory adverse events by course in paediatric leukaemia ascertained with automated electronic health record extraction: a retrospective cohort study from the Children's Oncology Group.

Year of Publication

2022

Number of Pages

e678-e688

Date Published

07/2022

ISSN Number

2352-3026

Abstract

BACKGROUND: Adverse events are often misreported in clinical trials, leading to an incomplete understanding of toxicities. We aimed to test automated laboratory adverse event ascertainment and grading (via the ExtractEHR automated package) to assess its scalability and define adverse event rates for children with acute myeloid leukaemia and acute lymphoblastic leukaemia.

METHODS: For this retrospective cohort study from the Children's Oncology Group (COG), we included patients aged 0-22 years treated for acute myeloid leukaemia or acute lymphoblastic leukaemia at Children's Healthcare of Atlanta (Atlanta, GA, USA) from Jan 1, 2010, to Nov 1, 2018, at the Children's Hospital of Philadelphia (Philadelphia, PA, USA) from Jan 1, 2011, to Dec 31, 2014, and at the Texas Children's Hospital (Houston, TX, USA) from Jan 1, 2011, to Dec 31, 2014. The ExtractEHR automated package acquired, cleaned, and graded laboratory data as per Common Terminology Criteria for Adverse Events (CTCAE) version 5 for 22 commonly evaluated grade 3-4 adverse events (fatal events were not evaluated) with numerically based CTCAE definitions. Descriptive statistics tabulated adverse event frequencies. Adverse events ascertained by ExtractEHR were compared to manually reported adverse events for patients enrolled in two COG trials (AAML1031, NCT01371981; AALL0932, NCT02883049). Analyses were restricted to protocol-defined chemotherapy courses (induction I, induction II, intensification I, intensification II, and intensification III for acute myeloid leukaemia; induction, consolidation, interim maintenance, delayed intensification, and maintenance for acute lymphoblastic leukaemia).

FINDINGS: Laboratory adverse event data from 1077 patients (583 from Children's Healthcare of Atlanta, 200 from the Children's Hospital of Philadelphia, and 294 from the Texas Children's Hospital) who underwent 4611 courses (549 for acute myeloid leukaemia and 4062 for acute lymphoblastic leukaemia) were extracted, processed, and graded. Of the 166 patients with acute myeloid leukaemia, 86 (52%) were female, 80 (48%) were male, 96 (58%) were White, and 132 (80%) were non-Hispanic. Of the 911 patients with acute lymphoblastic leukaemia, 406 (45%) were female, 505 (55%) were male, 596 (65%) were White, and 641 (70%) were non-Hispanic. Patients with acute myeloid leukaemia had the most adverse events during induction I and intensification II. Hypokalaemia (one [17%] of six to 75 [48%] of 156 courses) and alanine aminotransferase (ALT) increased (13 [10%] of 134 to 27 [17%] of 156 courses) were the most prevalent non-haematological adverse events in patients with acute myeloid leukaemia, as identified by ExtractEHR. Patients with acute lymphoblastic leukaemia had the greatest number of adverse events during induction and maintenance (eight adverse events with prevalence ≥10%; induction and maintenance: anaemia, platelet count decreased, white blood cell count decreased, neutrophil count decreased, lymphocyte count decreased, ALT increased, and hypocalcaemia; induction: hypokalaemia; maintenance: aspartate aminotransferase [AST] increased and blood bilirubin increased), as identified by ExtractEHR. 187 (85%) of 220 total comparisons in 22 adverse events in four AAML1031 and six AALL0923 courses were substantially higher with ExtractEHR than COG-reported adverse event rates for adverse events with a prevalence of at least 2%.

INTERPRETATION: ExtractEHR is scalable and accurately defines laboratory adverse event rates for paediatric acute leukaemia; moreover, ExtractEHR seems to detect higher rates of laboratory adverse events than those reported in COG trials. These rates can be used for comparisons between therapies and to counsel patients treated on or off trials about the risks of chemotherapy. ExtractEHR-based adverse event ascertainment can improve reporting of laboratory adverse events in clinical trials.

FUNDING: US National Institutes of Health, St Baldrick's Foundation, and Alex's Lemonade Stand Foundation.

DOI

10.1016/S2352-3026(22)00168-5

Alternate Title

Lancet Haematol

PMID

35870472

Title

A report from the Leukemia Electronic Abstraction of Records Network on risk of hepatotoxicity during pediatric acute lymphoblastic leukemia treatment.

Year of Publication

2022

Date Published

2022 Jan 27

ISSN Number

1592-8721

Abstract

<p>Not available.</p>

DOI

10.3324/haematol.2021.279805

Alternate Title

Haematologica

PMID

35081687

Title

Incidence and risk factors for hypoglycemia during maintenance chemotherapy in pediatric acute lymphoblastic leukemia.

Year of Publication

2021

Number of Pages

e29467

Date Published

2021 Nov 22

ISSN Number

1545-5017

Abstract

<p><strong>BACKGROUND: </strong>Fasting hypoglycemia is a recognized occurrence among pediatric patients with acute lymphoblastic leukemia (ALL) during maintenance therapy. Existing publications describing this finding are limited to small studies and case reports. Our objective was to determine the incidence of hypoglycemia during maintenance chemotherapy and to investigate the association of age, as well as other potential risk factors, with this outcome in pediatric patients with ALL.</p>

<p><strong>PROCEDURE: </strong>This retrospective cohort study included individuals 1 to 21 years of age with ALL treated with antimetabolite-containing maintenance chemotherapy at a large children's hospital between January 2011 and December 2014. The primary endpoint was time to first documented episode of hypoglycemia during maintenance therapy, defined as single measurement of plasma glucose&nbsp;&lt;60&nbsp;mg/dL. Cox regression was used to evaluate the association with age and identify other potential risk factors.</p>

<p><strong>RESULTS: </strong>We identified 126 eligible patients, of whom 63% were documented as White, non-Hispanic, 28% as non-White, non-Hispanic, and 9% as Hispanic. Twenty-eight children (22%) had documented hypoglycemia during maintenance therapy. Younger age at the start of maintenance and hepatotoxicity documented during chemotherapy prior to maintenance initiation were associated with hypoglycemia (adjusted HR age&nbsp;=&nbsp;0.88; 95% CI, 0.78-0.99; adjusted HR prior hepatotoxicity&nbsp;=&nbsp;3.50; 95% CI, 1.47-8.36).</p>

<p><strong>CONCLUSIONS: </strong>Nearly one quarter of children in our cohort had hypoglycemia documented during maintenance chemotherapy. Younger age at maintenance initiation and hepatotoxicity during chemotherapy prior to maintenance initiation emerged as risk factors. These findings highlight the importance of counseling about the risk of, and monitoring for, hypoglycemia, particularly in young children.</p>

DOI

10.1002/pbc.29467

Alternate Title

Pediatr Blood Cancer

PMID

34811879

Title

Using electronic medical record data to report laboratory adverse events.

Year of Publication

2017

Date Published

2017 Feb 01

ISSN Number

1365-2141

Abstract

<p>Despite the importance of adverse event (AE) reporting, AEs are under-reported on clinical trials. We hypothesized that electronic medical record (EMR) data can ascertain laboratory-based AEs more accurately than those ascertained manually. EMR data on 12 AEs for patients enrolled on two Children's Oncology Group (COG) trials at one institution were extracted, processed and graded. When compared to gold standard chart data, COG AE report sensitivity and positive predictive values (PPV) were 0-21·1% and 20-100%, respectively. EMR sensitivity and PPV were &gt;98·2% for all AEs. These results demonstrate that EMR-based AE ascertainment and grading substantially improves laboratory AE reporting accuracy.</p>

DOI

10.1111/bjh.14538

Alternate Title

Br. J. Haematol.

PMID

28146330

WATCH THIS PAGE

Subscription is not available for this page.