First name
Shannon
Last name
Stemler

Title

Association Between Mobile Telephone Interruptions and Medication Administration Errors in a Pediatric Intensive Care Unit.

Year of Publication

2019

Date Published

2019 Dec 20

ISSN Number

2168-6211

Abstract

<p><strong>Importance: </strong>Incoming text messages and calls on nurses' mobile telephones may interrupt medication administration, but whether such interruptions are associated with errors has not been established.</p>

<p><strong>Objective: </strong>To assess whether a temporal association exists between mobile telephone interruptions and subsequent errors by pediatric intensive care unit (PICU) nurses during medication administration.</p>

<p><strong>Design, Setting, and Participants: </strong>A retrospective cohort study was performed using telecommunications and electronic health record data from a PICU in a children's hospital. Data were collected from August 1, 2016, through September 30, 2017. Participants included 257 nurses and the 3308 patients to whom they administered medications.</p>

<p><strong>Exposures: </strong>Primary exposures were incoming telephone calls and text messages received on the institutional mobile telephone assigned to the nurse in the 10 minutes leading up to a medication administration attempt. Secondary exposures were the nurse's PICU experience, work shift (day vs night), nurse to patient ratio, and level of patient care required.</p>

<p><strong>Main Outcomes and Measures: </strong>Primary outcome, errors during medication administration, was a composite of reported medication administration errors and bar code medication administration error alerts generated when nurses attempted to give medications without active orders for the patient whose bar code they scanned.</p>

<p><strong>Results: </strong>Participants included 257 nurses, of whom 168 (65.4%) had 6 months or more of PICU experience; and 3308 patients, of whom 1839 (55.6%) were male, 1539 (46.5%) were white, and 2880 (87.1%) were non-Hispanic. The overall rate of errors during 238 540 medication administration attempts was 3.1% (95% CI, 3.0%-3.3%) when nurses were uninterrupted by incoming telephone calls and 3.7% (95% CI, 3.4%-4.0%) when they were interrupted by such calls. During day shift, the odds ratios (ORs) for error when interrupted by calls (compared with uninterrupted) were 1.02 (95% CI, 0.92-1.13; P = .73) among nurses with 6 months or more of PICU experience and 1.22 (95% CI, 1.00-1.47; P = .046) among nurses with less than 6 months of experience. During night shift, the ORs for error when interrupted by calls were 1.35 (95% CI, 1.16-1.57; P &lt; .001) among nurses with 6 months or more of PICU experience and 1.53 (95% CI, 1.16-2.03; P = .003) among nurses with less than 6 months of experience. Nurses administering medications to 1 or more patients receiving mechanical ventilation and arterial catheterization while caring for at least 1 other patient had an increased risk of error (OR, 1.21; 95% CI, 1.03-1.42; P = .02). Incoming text messages were not associated with error (OR, 0.97; 95% CI, 0.92-1.02; P = .22).</p>

<p><strong>Conclusions and Relevance: </strong>This study's findings suggest that incoming telephone call interruptions may be temporally associated with medication administration errors among PICU nurses. Risk of error varied by shift, experience, nurse to patient ratio, and level of patient care required.</p>

DOI

10.1001/jamapediatrics.2019.5001

Alternate Title

JAMA Pediatr

PMID

31860017

Title

Video Analysis of Factors Associated With Response Time to Physiologic Monitor Alarms in a Children's Hospital.

Year of Publication

2017

Number of Pages

524-31

Date Published

2017 Jun 1

ISSN Number

2168-6211

Abstract

<p><strong>Importance: </strong>Bedside monitor alarms alert nurses to life-threatening physiologic changes among patients, but the response times of nurses are slow.</p>

<p><strong>Objective: </strong>To identify factors associated with physiologic monitor alarm response time.</p>

<p><strong>Design, Setting, and Participants: </strong>This prospective cohort study used 551 hours of video-recorded care administered by 38 nurses to 100 children in a children's hospital medical unit between July 22, 2014, and November 11, 2015.</p>

<p><strong>Exposures: </strong>Patient, nurse, and alarm-level factors hypothesized to predict response time.</p>

<p><strong>Main Outcomes and Measures: </strong>We used multivariable accelerated failure-time models stratified by each nurse and adjusted for clustering within patients to evaluate associations between exposures and response time to alarms that occurred while the nurse was outside the room.</p>

<p><strong>Results: </strong>The study participants included 38 nurses, 100% (n = 38) of whom were white and 92% (n = 35) of whom were female, and 100 children, 51% (n = 51) of whom were male. The race/ethnicity of the child participants was 45% (n = 45) black or African American, 33% (n = 33) white, 4% (n = 4) Asian, and 18% (n = 18) other. Of 11 745 alarms among 100 children, 50 (0.5%) were actionable. The adjusted median response time among nurses was 10.4 minutes (95% CI, 5.0-15.8) and varied based on the following variables: if the patient was on complex care service (5.3 minutes [95% CI, 1.4-9.3] vs 11.1 minutes [95% CI, 5.6-16.6] among general pediatrics patients), whether family members were absent from the patient's bedside (6.3 minutes [95% CI, 2.2-10.4] vs 11.7 minutes [95% CI, 5.9-17.4] when family present), whether a nurse had less than 1 year of experience (4.4 minutes [95% CI, 3.4-5.5] vs 8.8 minutes [95% CI, 7.2-10.5] for nurses with 1 or more years of experience), if there was a 1 to 1 nursing assignment (3.5 minutes [95% CI, 1.3-5.7] vs 10.6 minutes [95% CI, 5.3-16.0] for nurses caring for 2 or more patients), if there were prior alarms requiring intervention (5.5 minutes [95% CI, 1.5-9.5] vs 10.7 minutes [5.2-16.2] for patients without intervention), and if there was a lethal arrhythmia alarm (1.2 minutes [95% CI, -0.6 to 2.9] vs 10.4 minutes [95% CI, 5.1-15.8] for alarms for other conditions). Each hour that elapsed during a nurse's shift was associated with a 15% longer response time (6.1 minutes [95% CI, 2.8-9.3] in hour 2 vs 14.1 minutes [95% CI, 6.4-21.7] in hour 8). The number of nonactionable alarms to which the nurse was exposed in the preceding 120 minutes was not associated with response time.</p>

<p><strong>Conclusions and Relevance: </strong>Response time was associated with factors that likely represent the heuristics nurses use to assess whether an alarm represents a life-threatening condition. The nurse to patient ratio and physical and mental fatigue (measured by the number of hours into a shift) represent modifiable factors associated with response time. Chronic alarm fatigue resulting from long-term exposure to nonactionable alarms may be a more important determinant of response time than short-term exposure.</p>

DOI

10.1001/jamapediatrics.2016.5123

Alternate Title

JAMA Pediatr

PMID

28394995

Title

Research: Acceptability, Feasibility, and Cost of Using Video to Evaluate Alarm Fatigue.

Year of Publication

2017

Number of Pages

25-33

Date Published

2017 Jan./Feb.

ISSN Number

0899-8205

DOI

10.2345/0899-8205-51.1.25

Alternate Title

Biomed Instrum Technol

PMID

28103098

Title

Systematic Review of Physiologic Monitor Alarm Characteristics and Pragmatic Interventions to Reduce Alarm Frequency.

Year of Publication

2016

Number of Pages

136-44

Date Published

2016 Feb

ISSN Number

1553-5606

Abstract

<p><strong>BACKGROUND: </strong>Alarm fatigue from frequent nonactionable physiologic monitor alarms is frequently named as a threat to patient safety.</p>

<p><strong>PURPOSE: </strong>To critically examine the available literature relevant to alarm fatigue.</p>

<p><strong>DATA SOURCES: </strong>Articles published in English, Spanish, or French between January 1980 and April 2015 indexed in PubMed, Cumulative Index to Nursing and Allied Health Literature, Scopus, Cochrane Library, Google Scholar, and ClinicalTrials.gov.</p>

<p><strong>STUDY SELECTION: </strong>Articles focused on hospital physiologic monitor alarms addressing any of the following: (1) the proportion of alarms that are actionable, (2) the relationship between alarm exposure and nurse response time, and (3) the effectiveness of interventions in reducing alarm frequency.</p>

<p><strong>DATA EXTRACTION: </strong>We extracted data on setting, collection methods, proportion of alarms determined to be actionable, nurse response time, and associations between interventions and alarm rates.</p>

<p><strong>DATA SYNTHESIS: </strong>Our search produced 24 observational studies focused on alarm characteristics and response time and 8 studies evaluating interventions. Actionable alarm proportion ranged from &lt;1% to 36% across a range of hospital settings. Two studies showed relationships between high alarm exposure and longer nurse response time. Most intervention studies included multiple components implemented simultaneously. Although studies varied widely, and many had high risk of bias, promising but still unproven interventions include widening alarm parameters, instituting alarm delays, and using disposable electrocardiographic wires or frequently changed electrocardiographic electrodes.</p>

<p><strong>CONCLUSIONS: </strong>Physiologic monitor alarms are commonly nonactionable, and evidence supporting the concept of alarm fatigue is emerging. Several interventions have the potential to reduce alarms safely, but more rigorously designed studies with attention to possible unintended consequences are needed. Journal of Hospital Medicine 2016;11:136-144. © 2015 Society of Hospital Medicine.</p>

DOI

10.1002/jhm.2520

Alternate Title

J Hosp Med

PMID

26663904

WATCH THIS PAGE

Subscription is not available for this page.