First name
Simon
Middle name
F
Last name
Lacey

Title

Temperature Trajectory Sub-Phenotypes and The Immuno-Inflammatory Response In Pediatric Sepsis.

Year of Publication

2021

Date Published

2021 Dec 27

ISSN Number

1540-0514

Abstract

<p><strong>OBJECTIVE: </strong>Heterogeneity has hampered sepsis trials, and sub-phenotyping may assist with enrichment strategies. However, biomarker-based strategies are difficult to operationalize. Four sub-phenotypes defined by distinct temperature trajectories in the first 72 hours have been reported in adult sepsis. Given the distinct epidemiology of pediatric sepsis, the existence and relevance of temperature trajectory-defined sub-phenotypes in children is unknown. We aimed to classify septic children into de novo sub-phenotypes derived from temperature trajectories in the first 72 hours, and compare cytokine, immune function, and immunometabolic markers across subgroups.</p>

<p><strong>METHODS: </strong>This was a secondary analysis of a prospective cohort of 191 critically ill septic children recruited from a single academic pediatric intensive care unit. We performed group-based trajectory modeling using temperatures over the first 72 hours of sepsis to identify latent profiles. We then used mixed effects regression to determine if temperature trajectory-defined sub-phenotypes were associated with cytokine levels, immune function, and mitochondrial respiration.</p>

<p><strong>RESULTS: </strong>We identified four temperature trajectory-defined sub-phenotypes: hypothermic, normothermic, hyperthermic fast-resolvers, and hyperthermic slow-resolvers. Hypothermic patients were less often previously healthy and exhibited lower levels of pro- and anti-inflammatory cytokines and chemokines. Hospital mortality did not differ between hypothermic children (17%) and other sub-phenotypes (3 to 11%; p = 0.26).</p>

<p><strong>CONCLUSIONS: </strong>Critically ill septic children can be categorized into temperature trajectory-defined sub-phenotypes that parallel adult sepsis. Hypothermic children exhibit a blunted cytokine and chemokine profile. Group-based trajectory modeling has utility for identifying subtypes of clinical syndromes by incorporating readily available longitudinal data, rather than relying on inputs from a single timepoint.</p>

DOI

10.1097/SHK.0000000000001906

Alternate Title

Shock

PMID

35066512

Title

Humanized CD19-Targeted Chimeric Antigen Receptor (CAR) T Cells in CAR-Naive and CAR-Exposed Children and Young Adults With Relapsed or Refractory Acute Lymphoblastic Leukemia.

Year of Publication

2021

Number of Pages

JCO2003458

Date Published

2021 Jun 22

ISSN Number

1527-7755

Abstract

<p><strong>PURPOSE: </strong>CD19-targeted chimeric antigen receptor (CAR)-modified T cells demonstrate unprecedented responses in B-cell acute lymphoblastic leukemia (B-ALL); however, relapse remains a substantial challenge. Short CAR T-cell persistence contributes to this risk; therefore, strategies to improve persistence are needed.</p>

<p><strong>METHODS: </strong>We conducted a pilot clinical trial of a humanized CD19 CAR T-cell product (huCART19) in children and young adults with relapsed or refractory B-ALL (n = 72) or B-lymphoblastic lymphoma (n = 2), treated in two cohorts: with (retreatment, n = 33) or without (CAR-naive, n = 41) prior CAR exposure. Patients were monitored for toxicity, response, and persistence of huCART19.</p>

<p><strong>RESULTS: </strong>Seventy-four patients 1-29 years of age received huCART19. Cytokine release syndrome developed in 62 (84%) patients and was grade 4 in five (6.8%). Neurologic toxicities were reported in 29 (39%), three (4%) grade 3 or 4, and fully resolved in all cases. The overall response rate at 1 month after infusion was 98% (100% in B-ALL) in the CAR-naive cohort and 64% in the retreatment cohort. At 6 months, the probability of losing huCART19 persistence was 27% (95% CI, 14 to 41) for CAR-naive and 48% (95% CI, 30 to 64) for retreatment patients, whereas the incidence of B-cell recovery was 15% (95% CI, 6 to 28) and 58% (95% CI, 33 to 77), respectively. Relapse-free survival at 12 and 24 months, respectively, was 84% (95% CI, 72 to 97) and 74% (95% CI, 60 to 90) in CAR-naive and 74% (95% CI, 56 to 97) and 58% (95% CI, 37 to 90) in retreatment cohorts.</p>

<p><strong>CONCLUSION: </strong>HuCART19 achieved durable remissions with long-term persistence in children and young adults with relapsed or refractory B-ALL, including after failure of prior CAR T-cell therapy.</p>

DOI

10.1200/JCO.20.03458

Alternate Title

J Clin Oncol

PMID

34156874

Title

Risk-Adapted Preemptive Tocilizumab to Prevent Severe Cytokine Release Syndrome After CTL019 for Pediatric B-Cell Acute Lymphoblastic Leukemia: A Prospective Clinical Trial.

Year of Publication

2021

Number of Pages

JCO2002477

Date Published

2021 Jan 08

ISSN Number

1527-7755

Abstract

<p><strong>PURPOSE: </strong>To prospectively evaluate the effectiveness of risk-adapted preemptive tocilizumab (PT) administration in preventing severe cytokine release syndrome (CRS) after CTL019, a CD19 chimeric antigen receptor T-cell therapy.</p>

<p><strong>METHODS: </strong>Children and young adults with CD19-positive relapsed or refractory B-cell acute lymphoblastic leukemia were assigned to high- (≥ 40%) or low- (&lt; 40%) tumor burden cohorts (HTBC or LTBC) based on a bone marrow aspirate or biopsy before infusion. HTBC patients received a single dose of tocilizumab (8-12 mg/kg) after development of high, persistent fevers. LTBC patients received standard CRS management. The primary end point was the frequency of grade 4 CRS (Penn scale), with an observed rate of ≤ 5 of 15 patients in the HTBC pre-defined as clinically meaningful. In post hoc analyses, the HTBC was compared with a historical cohort of high-tumor burden patients from the initial phase I CTL019 trial.</p>

<p><strong>RESULTS: </strong>The primary end point was met. Seventy patients were infused with CTL019, 15 in the HTBC and 55 in the LTBC. All HTBC patients received the PT intervention. The incidence of grade 4 CRS was 27% (95% CI, 8 to 55) in the HTBC and 3.6% (95% CI, 0.4 to 13) in the LTBC. The best overall response rate was 87% in the HTBC and 100% in the LTBC. Initial CTL019 expansion was greater in the HTBC than the LTBC ( &lt; .001), but persistence was not different ( = .73). Event-free and overall survival were worse in the HTBC ( = .004, &lt; .001, respectively). In the post hoc analysis, grade 4 CRS was observed in 27% versus 50% of patients in the PT and prior phase I cohorts, respectively ( = .18).</p>

<p><strong>CONCLUSION: </strong>Risk-adapted PT administration resulted in a decrease in the expected incidence of grade 4 CRS, meeting the study end point, without adversely impacting the antitumor efficacy or safety of CTL019.</p>

DOI

10.1200/JCO.20.02477

Alternate Title

J Clin Oncol

PMID

33417474

Title

Diagnostic biomarkers to differentiate sepsis from cytokine release syndrome in critically ill children.

Year of Publication

2020

Number of Pages

5174-5183

Date Published

2020 Oct 27

ISSN Number

2473-9537

Abstract

<p>Chimeric antigen receptor (CAR) T-cells directed against CD19 have drastically altered outcomes for children with relapsed and refractory acute lymphoblastic leukemia (r/r ALL). Pediatric patients with r/r ALL treated with CAR-T are at increased risk of both cytokine release syndrome (CRS) and sepsis. We sought to investigate the biologic differences between CRS and sepsis and to develop predictive models which could accurately differentiate CRS from sepsis at the time of critical illness. We identified 23 different cytokines that were significantly different between patients with sepsis and CRS. Using elastic net prediction modeling and tree classification, we identified cytokines that were able to classify subjects as having CRS or sepsis accurately. A markedly elevated interferon γ (IFNγ) or a mildly elevated IFNγ in combination with a low IL1β were associated with CRS. A normal to mildly elevated IFNγ in combination with an elevated IL1β was associated with sepsis. This combination of IFNγ and IL1β was able to categorize subjects as having CRS or sepsis with 97% accuracy. As CAR-T therapies become more common, these data provide important novel information to better manage potential associated toxicities.</p>

DOI

10.1182/bloodadvances.2020002592

Alternate Title

Blood Adv

PMID

33095872

Title

Identification of Predictive Biomarkers for Cytokine Release Syndrome after Chimeric Antigen Receptor T-cell Therapy for Acute Lymphoblastic Leukemia.

Year of Publication

2016

Number of Pages

664-79

Date Published

2016 06

ISSN Number

2159-8290

Abstract

<p><strong>UNLABELLED: </strong>Chimeric antigen receptor (CAR)-modified T cells with anti-CD19 specificity are a highly effective novel immune therapy for relapsed/refractory acute lymphoblastic leukemia. Cytokine release syndrome (CRS) is the most significant and life-threatening toxicity. To improve understanding of CRS, we measured cytokines and clinical biomarkers in 51 CTL019-treated patients. Peak levels of 24 cytokines, including IFNγ, IL6, sgp130, and sIL6R, in the first month after infusion were highly associated with severe CRS. Using regression modeling, we could accurately predict which patients would develop severe CRS with a signature composed of three cytokines. Results were validated in an independent cohort. Changes in serum biochemical markers, including C-reactive protein and ferritin, were associated with CRS but failed to predict development of severe CRS. These comprehensive profiling data provide novel insights into CRS biology and, importantly, represent the first data that can accurately predict which patients have a high probability of becoming critically ill.</p>

<p><strong>SIGNIFICANCE: </strong>CRS is the most common severe toxicity seen after CAR T-cell treatment. We developed models that can accurately predict which patients are likely to develop severe CRS before they become critically ill, which improves understanding of CRS biology and may guide future cytokine-directed therapy. Cancer Discov; 6(6); 664-79. ©2016 AACR.See related commentary by Rouce and Heslop, p. 579This article is highlighted in the In This Issue feature, p. 561.</p>

DOI

10.1158/2159-8290.CD-16-0040

Alternate Title

Cancer Discov

PMID

27076371

Title

Chimeric antigen receptor T cells for sustained remissions in leukemia.

Year of Publication

2014

Number of Pages

1507-17

Date Published

2014 Oct 16

ISSN Number

1533-4406

Abstract

<p><strong>BACKGROUND: </strong>Relapsed acute lymphoblastic leukemia (ALL) is difficult to treat despite the availability of aggressive therapies. Chimeric antigen receptor-modified T cells targeting CD19 may overcome many limitations of conventional therapies and induce remission in patients with refractory disease.</p>

<p><strong>METHODS: </strong>We infused autologous T cells transduced with a CD19-directed chimeric antigen receptor (CTL019) lentiviral vector in patients with relapsed or refractory ALL at doses of 0.76×10(6) to 20.6×10(6) CTL019 cells per kilogram of body weight. Patients were monitored for a response, toxic effects, and the expansion and persistence of circulating CTL019 T cells.</p>

<p><strong>RESULTS: </strong>A total of 30 children and adults received CTL019. Complete remission was achieved in 27 patients (90%), including 2 patients with blinatumomab-refractory disease and 15 who had undergone stem-cell transplantation. CTL019 cells proliferated in vivo and were detectable in the blood, bone marrow, and cerebrospinal fluid of patients who had a response. Sustained remission was achieved with a 6-month event-free survival rate of 67% (95% confidence interval [CI], 51 to 88) and an overall survival rate of 78% (95% CI, 65 to 95). At 6 months, the probability that a patient would have persistence of CTL019 was 68% (95% CI, 50 to 92) and the probability that a patient would have relapse-free B-cell aplasia was 73% (95% CI, 57 to 94). All the patients had the cytokine-release syndrome. Severe cytokine-release syndrome, which developed in 27% of the patients, was associated with a higher disease burden before infusion and was effectively treated with the anti-interleukin-6 receptor antibody tocilizumab.</p>

<p><strong>CONCLUSIONS: </strong>Chimeric antigen receptor-modified T-cell therapy against CD19 was effective in treating relapsed and refractory ALL. CTL019 was associated with a high remission rate, even among patients for whom stem-cell transplantation had failed, and durable remissions up to 24 months were observed. (Funded by Novartis and others; CART19 ClinicalTrials.gov numbers, NCT01626495 and NCT01029366.).</p>

DOI

10.1056/NEJMoa1407222

Alternate Title

N. Engl. J. Med.

PMID

25317870

WATCH THIS PAGE

Subscription is not available for this page.