First name
Matthew
Middle name
P
Last name
Kirschen

Title

Intracranial Traumatic Hematoma Detection in Children Using a Portable Near-infrared Spectroscopy Device.

Year of Publication

2021

Number of Pages

782-791

Date Published

2021 Mar 24

ISSN Number

1936-9018

Abstract

<p><strong>INTRODUCTION: </strong>We sought to validate a handheld, near-infrared spectroscopy (NIRS) device for detecting intracranial hematomas in children with head injury.</p>

<p><strong>METHODS: </strong>Eligible patients were those &lt;18 years old who were admitted to the emergency department at three academic children's hospitals with head trauma and who received a clinically indicated head computed tomography (HCT). Measurements were obtained by a blinded operator in bilateral frontal, temporal, parietal, and occipital regions. Qualifying hematomas were a priori determined to be within the brain scanner's detection limits of &gt;3.5 milliliters in volume and &lt;2.5 centimeters from the surface of the brain. The device's measurements were positive if the difference in optical density between hemispheres was &gt;0.2 on three successive scans. We calculated diagnostic performance measures with corresponding exact two-sided 95% Clopper-Pearson confidence intervals (CI). Hypothesis test evaluated whether predictive performance exceeded chance agreement (predictive Youden's index &gt; 0).</p>

<p><strong>RESULTS: </strong>A total of 464 patients were enrolled and 344 met inclusion for primary data analysis: 10.5% (36/344) had evidence of a hematoma on HCT, and 4.7% (16/344) had qualifying hematomas. The handheld brain scanner demonstrated a sensitivity of 58.3% (21/36) and specificity of 67.9% (209/308) for hematomas of any size. For qualifying hematomas the scanner was designed to detect, sensitivity was 81% (13/16) and specificity was 67.4% (221/328). Predictive performance exceeded chance agreement with a predictive Youden's index of 0.11 (95% CI, 0.10 - 0.15; P &lt; 0.001) for all hematomas, and 0.09 (95% CI, 0.08 - 0.12; P &lt; 0.001) for qualifying hematomas.</p>

<p><strong>CONCLUSION: </strong>The handheld brain scanner can non-invasively detect a subset of intracranial hematomas in children and may serve an adjunctive role to head-injury neuroimaging decision rules that predict the risk of clinically significant intracranial pathology after head trauma.</p>

DOI

10.5811/westjem.2020.11.47251

Alternate Title

West J Emerg Med

PMID

34125061

Title

Ethical Issues in Neuroprognostication after Severe Pediatric Brain Injury.

Year of Publication

2015

Number of Pages

187-95

Date Published

2015 Sep

ISSN Number

1558-0776

Abstract

<p>Neurologic outcome prediction, or neuroprognostication, after severe brain injury in children is a challenging task and has many ethical dimensions. Neurologists and intensivists are frequently asked by families to predict functional recovery after brain injury to help guide medical decision making despite limited outcome data. Using two clinical cases of children with severe brain injury from different mechanisms: hypoxic-ischemic injury secondary to cardiac arrest and traumatic brain injury, this article first addresses the importance of making a correct diagnosis in a child with a disorder of consciousness and then discusses some of the clinical challenges with deducing an accurate and timely outcome prediction. We further explore the ethical obligations of physicians when supporting parental decision making. We highlight the need to focus on how to elicit family values for a brain injured child, how to manage prognostic uncertainty, and how to effectively communicate with families in these challenging situations. We offer guidance for physicians when they have diverging views from families on aggressiveness of care or feel pressured to prognosticate with in a "window of opportunity" for limiting or withdrawing life sustaining therapies. We conclude with a discussion of the potential influence of emerging technologies, specifically advanced functional neuroimaging, on neurologic outcome prediction after severe brain injury.</p>

DOI

10.1016/j.spen.2015.05.004

Alternate Title

Semin Pediatr Neurol

PMID

26358429

WATCH THIS PAGE

Subscription is not available for this page.